前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >备战双十一之服务器扩容思路及问题分析

备战双十一之服务器扩容思路及问题分析

作者头像
dys
发布于 2021-11-02 02:38:31
发布于 2021-11-02 02:38:31
1.1K0
举报
文章被收录于专栏:性能与架构性能与架构

为什么要扩容

说人话就是, 无论如何优化性能,能达到的最大值是一定的,对于一个用户量大的应用,可以对服务器进行各种优化,诸如限流、资源隔离,但是上限还是在那里,这时候就应该改变我们的硬件,例如使用更强的CPU、更大的内存,在前文中举了一个学生食堂打饭的例子,如果学生多了,可以通过令牌桶算法优先给高三学生令牌打饭,但是如果高三的学生还是很多呢?那就只有增加窗口或者食堂的数量,也就是硬件上的扩容。

扩容策略

扩容策略可以分为两种, 一种是对单机整体扩容,也就是机器内部包含CPU、内存、存储设备等,另一种是扩容对应的组件,例如扩内存、扩磁盘、扩CPU。

整机硬件

整机扩容的好处是,有很多专业的服务器硬件供应商,例如IBM、浪潮、DELL、HP等,专业的硬件供应商,他们组装以及搭配方面可能经验更加丰富,另外有些公司会对组件进行一些优化,从而服务器更加稳定,可以类比为买电脑,有的人可能选择买淘宝卖家已经组装好的台式,有的人可能自己买各种硬件自己回家组装,对于一般人而言,选择前者是较为靠谱的选择,因为你即使懂硬件的一些参数,也难保自己搭配的机器是否能发挥各个部件最大性能。

组件

对于一些技术能力强悍的公司,更多的是自己买各种组件组装,这样成本更低,因为节省了组装等费用,并且可以根据业务个性化定制,例如有的公司是计算密集型的,那么主要是更换更强的CPU,有的IO密集型,那么扩容的应该是内存等,有的公司需要存储大量的数据,那么可能扩容的是硬盘等存储设备。

组件包含:

cpu

Intel、Amd ,参考频率、线程数等

网卡

百兆->千兆 -> 万兆

内存

ECC校验

磁盘

SCSI HDD(机械)、HHD(混合)、SATA SSD、PCI-e SSD、 MVMe SSD

AKF拆分原则

Redis集群拆分原则之AKF中,详细介绍了AKF拆分原则的详情,这儿简单回顾一下:

对于一个应用,如果单机不足以支撑服务请求,那么可以建立诸如主主、主从等模式的集群:

这个叫AKF原则X轴扩展,目的是将请求分流在多台机器上,但是多台机器中间要解决数据同步性的问题,越多的机器数据不同步的可能性越大,这也就意味着没法无限整体复制扩容。所以可以整理搜集服务器内热点的业务请求,将业务分离出来,只对热点业务进行扩容,这就是AKF原则的Y轴拆分:

对业务拆分之后,某个业务还可能太热点,也就是Y轴拆分后水平复制还是不足以支撑数据请求,那么可以将业务的数据进行拆分, 具体来说就是,某个业务的数据,可以放在多个地方,例如在湖北、北京、上海部署机房,各地的人们需要请求数据时,由离得近的服务器提供服务。

拆分扩容后存在的问题

随着业务的增长,系统变得越来越庞大, 根据系统功能拆分成独立而又互通的项目, 比如交易系统、财务系统、生产流程系统、物流系统、网站系统等等,但是分布式结构会存在很多问题。对于这些问题每一个都值得深入探讨,这儿简单的提一下,后面再开篇幅。

  1. 数据共享问题 所有的服务之间数据如何共享同步,这是一个需要考虑的问题,微服务架构中,数据不可能只有一份,没法避免机器损坏等原因造成的数据丢失,多份数据之间如何同步?目前可供参考的解决思路是建立数据中心、搭建数据库集群。
  2. 接口调用问题 不同的服务器之间进行调用遵循远程调用协议RPC JAVA RMI:Java远程方法调用,即Java RMI(Java Remote Method Invocation)是Java编程语言里,一种用于实现远程过程调用的应用程序编程接口。它使客户机上运行的程序可以调用远程服务器上的对象。 dubbo:提供了面向接口代理的高性能RPC调用
  3. 持久化数据雪崩问题 数据库分库分表,参考:MySQL调优之分区表。 资源隔离,参考:亿级流量架构之资源隔离思路与方法。 缓存设定数据持久化策略:Redis持久化之RDB和AOF
  4. 高并发问题 缓存:诸如缓存击穿、穿透、雪崩等,参考Redis击穿、穿透、雪崩产生原因以及解决思路数据闭环:为了便于理解,举个例子,对于淘宝而言,有网页版、IOS版、安卓版、还有什么一淘等等,虽然客户端不一样,但是展示的商品信息是相同的,也就是一件商品,无论是哪个端用的数据是一样的,需要一套方案来解决并发下根据相同数据在不同端进行不同展示的问题,这就叫数据闭环。
  5. 数据一致性问题 这是一个难点,大意就是多个服务器之间数据如何保证一致性,同样的商品在不同客户端服务端端价格应该是一样的, 通常使用分布式锁。

数据库扩容:集群

先简单说一下分布式与集群的区别,这两个词儿经常一起出现,但是意义却有所不同,分布式会缩短单个任务的执行时间来提升工作效率,而集群强调的是提高单位时间内执行操作数的增加来提高效率。更简单的来说,分布式是将步骤分到每台电脑上,不考虑依赖关系,集群方案是指几个任务同时在处理。

单一数据库存储难以满足业务需求时,采取集群的方式,将数据存储在不同的服务器,这可以是主主或者主从,主从中主负责写,从负责读,将与数据库有关的压力进行分解到多台机器上。

分布式ID

在复杂分布式系统中,往往需要对大量的数据和消息进行唯一标识。很容易想到的是利用自增,但是自增有很多问题,例如ID有太强的规律,可能会被恶意查询搜集,面对数据日渐增长,对数据分库分表后需要有一个唯一ID来标识一条数据或消息,这样数据库的自增ID显然不能满足需求;特别一点的如商品、订单、用户也都需要有唯一ID做标识。此时一个能够生成全局唯一ID的系统是非常必要的。概括下来,那业务系统对ID号的要求有哪些呢?

分布式ID要求

面对分布式ID,需要满足下面的要求:

  1. 全局唯一性:不能出现重复的ID号,既然是唯一标识,这是最基本的要求。
  2. 趋势递增:在MySQL InnoDB引擎中使用的是聚集索引,由于多数RDBMS使用B-tree的数据结构来存储索引数据,在主键的选择上面我们应该尽量使用有序的主键保证写入性能。
  3. 单调递增:保证下一个ID一定大于上一个ID,例如事务版本号、IM增量消息、排序等特殊需求。
  4. 信息安全:如果ID是连续的,恶意用户的扒取工作就非常容易做了,直接按照顺序下载指定URL即可;如果是订单号就更危险了,竞对可以直接知道我们一天的单量。所以在一些应用场景下,会需要ID无规则、不规则。

上述123对应三类不同的场景,但是3和4的需求是互斥的,也就是无法使用同一个方案满足。除了对ID号码自身的要求,业务还对ID号生成系统的可用性要求极高,想象一下,如果ID生成系统瘫痪,整个与数据有关的动作都无法执行,会带来一场灾难。由此总结下一个ID生成系统最少应该做到如下几点:

  1. 平均延迟和TP999延迟都要尽可能低;
  2. 可用性5个9(这是美团的要求,有些企业例如阿里要求6个9);
  3. 高QPS。

分布式ID生成策略

目前业界常用的ID生成策略有很多,例如UUID、雪花生成算法、Redis、Zookeeper等,这儿只简单讲讲UUID以及Snowflake,后面要开篇详谈。

UUID生成算法

UUID(Universally Unique Identifier)的标准型式包含32个16进制数字,以连字号分为五段,形式为8-4-4-4-12的36个字符,示例:550e8400-e29b-41d4-a716-446655440000,到目前为止业界一共有5种方式生成UUID,详情见IETF发布的UUID规范 A Universally Unique IDentifier (UUID) URN Namespace(http://www.ietf.org/rfc/rfc4122.txt)。

优点:

  • 性能非常高:本地生成,没有网络消耗。

缺点:

  • 不易于存储:UUID太长,16字节128位,通常以36长度的字符串表示,很多场景不适用。
  • 信息不安全:基于MAC地址生成UUID的算法可能会造成MAC地址泄露,这个漏洞曾被用于寻找梅丽莎病毒的制作者位置。
  • ID作为主键时在特定的环境会存在一些问题,比如做DB主键的场景下,UUID就非常不适用: ① MySQL官方有明确的建议主键要尽量越短越好[4],36个字符长度的UUID不符合要求。 All indexes other than the clustered index are known as secondary indexes. In InnoDB, each record in a secondary index contains the primary key columns for the row, as well as the columns specified for the secondary index. InnoDB uses this primary key value to search for the row in the clustered index.If the primary key is long, the secondary indexes use more space, so it is advantageous to have a short primary key.

② 对MySQL索引不利:如果作为数据库主键,在InnoDB引擎下,UUID的无序性可能会引起数据位置频繁变 动,严重影响性能。

雪花生成算法

这种方案大致来说是一种以划分命名空间(UUID也算,由于比较常见,所以单独分析)来生成ID的一种算法,这种方案把64-bit分别划分成多段,分开来标示机器、时间等,比如在snowflake中的64-bit分别表示如下图(图片来自网络)所示:



41-bit的时间可以表示(1L<<41)/(1000L360024*365)=69年的时间,10-bit机器可以分别表示1024台机器。如果我们对IDC划分有需求,还可以将10-bit分5-bit给IDC,分5-bit给工作机器。这样就可以表示32个IDC,每个IDC下可以有32台机器,可以根据自身需求定义。12个自增序列号可以表示2的12次方个ID,理论上snowflake方案的QPS约为409.6w/s,这种分配方式可以保证在任何一个IDC的任何一台机器在任意毫秒内生成的ID都是不同的。

这种方式的优缺点是:

优点:

  • 毫秒数在高位,自增序列在低位,整个ID都是趋势递增的。
  • 不依赖数据库等第三方系统,以服务的方式部署,稳定性更高,生成ID的性能也是非常高的。
  • 可以根据自身业务特性分配bit位,非常灵活。

缺点:

  • 强依赖机器时钟,如果机器上时钟回拨,会导致发号重复或者服务会处于不可用状态。

弹性扩容

说人话,就是让集群根据计划在某一段时间自动对资源进行扩容,并在设置的计划还原时间时释放资源。这样能解决规律性的资源峰谷需求,达到充分合理利用资源的目的。 但是弹性扩容有一些问题:

第一,虚拟机弹性能力较弱。使用虚拟机部署业务,在弹性扩容时,需要经过申请虚拟机、创建和部署虚拟机、配置业务环境、启动业务实例这几个步骤。前面的几个步骤属于私有云平台,后面的步骤属于业务工程师。一次扩容需要多部门配合完成,扩容时间以小时计,过程难以实现自动化。如果可以实现自动化“一键快速扩容”,将极大地提高业务弹性效率,释放更多的人力,同时也消除了人工操作导致事故的隐患。

第二,IT成本高。由于虚拟机弹性能力较弱,业务部门为了应对流量高峰和突发流量,普遍采用预留大量机器和服务实例的做法。即先部署好大量的虚拟机或物理机,按照业务高峰时所需资源做预留,一般是非高峰时段资源需求的两倍。资源预留的办法带来非常高的IT成本,在非高峰时段,这些机器资源处于空闲状态,也是巨大的浪费。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-11-01,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 JAVA高性能架构 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
亿级流量架构,服务器如何扩容?写得太好了!
点击关注公众号,Java干货及时送达 为什么要扩容 说人话就是, 无论如何优化性能,能达到的最大值是一定的,对于一个用户量大的应用,可以对服务器进行各种优化,诸如限流、资源隔离,但是上限还是在那里
Java技术栈
2022/04/24
1.1K0
亿级流量架构,服务器如何扩容?写得太好了!
开源|为什么要使用ns4_gear_idgen ID生成器?
NS4系列包括4个开源模块,分别是:ns4_frame 分布式服务框架(详情点击查看:开源|ns4_frame分布式服务框架开发指南)、ns4_gear_idgen ID生成器组件(NS4框架Demo示例)、ns4_gear_watchdog 监控系统组件(服务守护、应用性能监控、数据采集、自动化报警系统)和ns4_chatbot通讯组件。
宜信技术学院
2019/06/28
6330
一文读懂“Snowflake(雪花)”算法
Snowflake 中文的意思为雪花,所以 Snowflake算法 常被称为 雪花算法,是 Twitter(现“X”)开源的分布式 ID 生成算法,是一种分布式主键ID生成的解决方案。
Blue_007
2023/11/27
16.4K1
一文读懂“Snowflake(雪花)”算法
Leaf——美团点评分布式ID生成系统
背景 在复杂分布式系统中,往往需要对大量的数据和消息进行唯一标识。如在美团点评的金融、支付、餐饮、酒店、猫眼电影等产品的系统中,数据日渐增长,对数据分库分表后需要有一个唯一ID来标识一条数据或消息,数据库的自增ID显然不能满足需求;特别一点的如订单、骑手、优惠券也都需要有唯一ID做标识。此时一个能够生成全局唯一ID的系统是非常必要的。概括下来,那业务系统对ID号的要求有哪些呢? 全局唯一性:不能出现重复的ID号,既然是唯一标识,这是最基本的要求。 趋势递增:在MySQL InnoDB引擎中使用的是聚集索引,
美团技术团队
2018/03/12
1.8K0
Leaf——美团点评分布式ID生成系统
分库分表后全局ID生成方案
依据数据库的第二范式,数据库中每一个表中都需要有一个唯一的主键,其他数据元素和主键一一对应。
JavaEdge
2022/11/30
6780
分库分表后全局ID生成方案
MySQL分库分表会带来哪些棘手的问题?
导读:分库分表能有效的环节单机和单库带来的性能瓶颈和压力,突破网络IO、硬件资源、连接数的瓶颈,同时也带来了一些问题。
码农架构
2021/07/08
1.8K0
MySQL分库分表会带来哪些棘手的问题?
通俗易懂:如何设计能支撑百万并发的数据库架构?
相信看到这个标题,很多人的第一反应就是:对数据库进行分库分表啊!但是实际上,数据库层面的分库分表到底是用来干什么的,其不同的作用如何应对不同的场景,我觉得很多同学可能都没搞清楚。
JackJiang
2019/05/15
1.2K0
【干货】MySQL 分库分表及其平滑扩容方案
众所周知,数据库很容易成为应用系统的瓶颈。单机数据库的资源和处理能力有限,在高并发的分布式系统中,可采用分库分表突破单机局限。本文总结了分库分表的相关概念、全局ID的生成策略、分片策略、平滑扩容方案、以及流行的方案。
IT技术小咖
2019/06/26
10.7K1
【干货】MySQL 分库分表及其平滑扩容方案
分布式ID生成方案总结整理
对于单体系统来说,主键ID可能会常用主键自动的方式进行设置,这种ID生成方法在单体项目是可行的,但是对于分布式系统,分库分表之后,就不适应了,比如订单表数据量太大了,分成了多个库,如果还采用数据库主键自增的方式,就会出现在不同库id一致的情况,虽然是不符合业务的
SmileNicky
2022/11/02
3.1K0
分布式ID生成方案总结整理
支撑海量数据的数据库架构如何设计?
作为一个全球人数最多的国家,一个再怎么凄惨的行业,都能找出很多的人为之付出。而在这个互联网的时代,IT公司绝对比牛毛还多很多。但是大多数都是创业公司,长期存活的真的不多。大多数的IT项目在注册量从0-100万,日活跃1-5万,说实话就这种系统随便找一个有几年工作经验的高级工程师,然后带几个年轻工程师,随便干干都可以做出来。 因为这样的系统,实际上主要就是在前期快速的进行业务功能的开发,搞一个单块系统部署在一台服务器上,然后连接一个数据库就可以了。接着大家就是不停的在一个工程里填充进去各种业务代码,尽快把公司的业务支撑起来。
JavaQ
2019/06/02
1.1K0
数据库分库分表如何避免“过度设计”和“过早优化”
关系型数据库本身比较容易成为系统瓶颈,单机存储容量、连接数、处理能力都有限。当单表的数据量达到1000W或100G以后,由于查询维度较多,即使添加从库、优化索引,做很多操作时性能仍下降严重。此时就要考虑对其进行切分了,切分的目的就在于减少数据库的负担,缩短查询时间。
Bug开发工程师
2018/08/17
2K0
数据库分库分表如何避免“过度设计”和“过早优化”
支撑百万并发的数据库架构如何设计?
这篇文章,我们来聊一下对于一个支撑日活百万用户的高并系统,他的数据库架构应该如何设计?
良月柒
2019/03/20
1.2K0
支撑百万并发的数据库架构如何设计?
讲分布式唯一id,这篇文章很实在
分布式系统全局唯一的 id 是所有系统都会遇到的场景,往往会被用在搜索,存储方面,用于作为唯一的标识或者排序,比如全局唯一的订单号,优惠券的券码等,如果出现两个相同的订单号,对于用户无疑将是一个巨大的bug。
秦怀杂货店
2022/02/17
4580
讲分布式唯一id,这篇文章很实在
数据库分库分表思路
关系型数据库本身比较容易成为系统瓶颈,单机存储容量、连接数、处理能力都有限。当单表的数据量达到1000W或100G以后,由于查询维度较多,即使添加从库、优化索引,做很多操作时性能仍下降严重。此时就要考虑对其进行切分了,切分的目的就在于减少数据库的负担,缩短查询时间。
凯哥Java
2019/06/28
7250
分布式唯一ID生成方案浅谈
在业务开发中,会存在大量的场景都需要唯一ID来进行标识。比如,用户需要唯一身份标识;商品需要唯一标识;消息需要唯一标识;事件需要唯一标识等等。尤其是在分布式场景下,业务会更加依赖唯一ID。
用户2513027
2022/07/09
7540
分布式唯一ID生成方案浅谈
常见分布式id生成方案_分布式id生成方案
在说分布式ID的具体实现之前,我们来简单分析一下为什么用分布式ID?分布式ID应该满足哪些特征?
全栈程序员站长
2022/11/18
9740
常见分布式id生成方案_分布式id生成方案
分布式ID生成算法-雪花算法
为什么需要分布式全局唯一ID以及分布式ID的业务需求?集群高并发情况下如何保证分布式唯一全局Id生成?
彼岸舞
2021/11/16
1.2K0
支撑百万并发的数据库架构,不仅只需分库分表那么简单!
原文:http://www.enmotech.com/web/detail/1/756/1.html
数据和云01
2019/08/01
6590
一口气说出 9种 分布式ID生成方式,面试官有点懵了
前两天粉丝给我留言吐槽最近面试:“四哥,年前我在公司受点委屈一冲动就裸辞了,然后现在疫情严重两个多月还没找到工作,接了几个视频面试也都没下文。好多面试官问完一个问题,紧接着说还会其他解决方法吗?能干活解决bug不就行了吗?那还得会多少种方法?”
用户4172423
2020/02/26
9830
分布式系统ID的几种生成办法
一般单机或者单数据库的项目可能规模比较小,适应的场景也比较有限,平台的访问量和业务量都较小,业务ID的生成方式比较原始但是够用,它并没有给这样的系统带来问题和瓶颈,所以这种情况下我们并没有对此给予太多的关注。但是对于大厂的那种大规模复杂业务、分布式高并发的应用场景,显然这种ID的生成方式不会像小项目一样仅仅依靠简单的数据自增序列来完成,而且在分布式环境下这种方式已经无法满足业务的需求,不仅无法完成业务能力,业务ID生成的速度或者重复问题可能给系统带来严重的故障。所以这一次,我们看看大厂都是怎么分析和解决这种ID生成问题的,同时,我也将我之前使用过的方式拿出来对比,看看有什么问题,从中能够得到什么启发。
用户1214487
2020/06/19
6520
分布式系统ID的几种生成办法
推荐阅读
相关推荐
亿级流量架构,服务器如何扩容?写得太好了!
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档