Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >开源监控系统 Prometheus 最佳实践

开源监控系统 Prometheus 最佳实践

作者头像
腾讯技术工程官方号
发布于 2021-11-17 01:40:07
发布于 2021-11-17 01:40:07
1.8K00
代码可运行
举报
运行总次数:0
代码可运行

作者:jimmiehan(韩金明) , 腾讯PCG后台开发工程师, Prometheus/Thanos contributor

Prometheus 是目前最流行的开源监控系统之一, 这里以我在基于 Prometheus 构建天机阁 2.0Metrics 子系统的实践谈一谈 Prometheus 的一些最佳实践, 最佳实践的理念是 Prometheus 系统简单稳定高效运行的关键。(注: 天机阁 2.0 是新一代云原生可观测性系统)

埋点思路

最好将原始指标暴露给 Prometheus, 而不是在应用程序端进行计算. 如不需要在应用程序端计算错误率, 而应该埋点总量和错误量两个 counter, 查询时用 PromQL 处理原始数据, 相除得到错误率。

  1. 在线服务: RED 方法, Requests(请求量), Errors(错误量), Duration(耗时);
  2. 离线服务: USE 方法, Utilisation(使用率, 如满载程度), Saturation(饱和度, 如排队任务数), Errors 错误量。

开源项目例子:

内部代码例子:

  • 天机阁 Go SDK tps-sdk-go
  • Opentelemetry Oteam Go 生态 SDK opentelemetry-go-ecosystem
  • 卡片服务 we-feed-card

指标名字

指标命名的整体结构是 name_unit_suffix , 符合正则[a-zA-Z*][a-zA-Z0-9_]\*

name:
  1. name 要做到望文生义, 类似变量名, 应具有良好的可读性. 如 http_requests_total, process_resident_memory_bytes, queue_size, queue_limit. 可参考 k8s/etcd/prometheus/grafana/tidb 等开源项目;
  2. 指标名称是全局的, 携带命名空间可以有效避免命名冲突. 如 process_xxx 表示进程指标, rpc_xxx 表示 RPC 指标, followsys_xxx 表示关注系统业务指标;
  3. 指标名称不要带环境名/应用名, 这些元信息适合用 label 承载, Prometheus 在抓取指标时自动附加, 不需要在埋点代码中定义. 在接入天机阁时会自动给指标附加 app/server/env_name/container_name/namespace 这些元信息;
  4. Prometheus 自定义指标如果要携带中文指标名, 我们约定放在名字为_name 的 label 中。
unit:
  1. 指标名可以带上单位, 如 request_bytes_total , request_latency_seconds;
  2. 值总是使用基本单位, 如 秒/米/字节, 单位展示可读性的事情则交给 Grafana 等展示 UI 来处理。
suffix:
  1. counter 必须以_total 为后缀,OpenMetrics 规范定义
  2. 信息类指标以_info 为后缀, 类型为 gauge,值为 1;
  3. 指标名称不要带 _sum _count _bucket 后缀,以免与 histogram/summary 类型生成的指标名混淆。

指标 label

label 对于多维监控非常有用,一个指标的基数是指标中所有 label 枚举值组合的笛卡尔乘积. 一个进程中一个指标一千的基数是合理的上限。一个进程的总基数是所有指标的基数之和, 一个进程一万总基数是合理的上限,因此:

  1. label 中不适合放 用户 ID/设备 ID/URL 参数 等高基数的值. 单个 label 值不超过 128 个字符;
  2. 避免一个指标过多的 label 组合, 不必要的组合 label 可以拆解为多个指标, 以便降低指标基数, 提高该指标的查询性能. 参考: https://www.robustperception.io/cardinality-is-ke
  3. Metrics 更关注系统级别的高效指标而不是单个请求级别, 不要在 Metrics 中放过多的细节 label, 单独 Metrics 无法解决所有的可观测性问题, 详细的信息应记录 Logs 和 Traces 中, 或者在 Exemplar 带上 traceID, 充分利用三大信号 Metrics/Logs/Traces 关联 一起来观测系统

PromQL

  1. 对于 counter, 要先 rate 后 sum, 因为rate/irate/increase 函数才有 counter 跳变检测
  2. 聚合语句模式中 <aggr-op>([parameter,] <vector expression>) [without|by (<label list>)] without 是移除特定标签, by 则是保留某些标签. without 能在聚合移除高基数标签的同时保留更多的上下文信息;
  3. 向量匹配 on 语句 join info 类型的指标可以达到在查询结果中附加元信息的效果. 例如下面的 promQL 在查询服务内存占用的同时附加实例的 Go 版本。
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
process_resident_memory_bytes{app="xx", server="xxx",namespace="Production"}
* on(instance) group_left(version)
go_info{app="xx", server="xxx",namespace="Production"}

relabel_configs

relabel_configs是很通用很有用的 metrics label processor:

  1. relabel_configs 发生在抓取之前, 可以对目标的每条时间序列附加元数据;
  2. metrics_relabel_configs 发生在抓取之后, 可以对 label 进行重命名/drop 等操作;
  3. alert_relabel_configs 发生在执行规则后发送 alert 至 alertmanager 之前, 如 drop 掉 replica 这个 label 用于 alertmanager 去重;
  4. write_relabel_configs 发生在 remote write 时, 用于 drop 掉 replica label 、drop 某些指标。

查询性能

  1. Prometheus 查询性能与查询语句计算所命中的时间序列数量、样本数以及返回的数据大小 强相关. 正常小查询响应是毫秒级的. 界面展示的大查询(涉及时间序列超过 10k 以上的), 如租户内的所有请求量/server 级别的 CPU 使用列表 这些大查询需要用 recording_rule 定时计算好, 将查询所需的时间序列数降低;
  2. 展示单个信息或表格使用 instantQuery 即时查询, 只返回最新时刻计算的数据即可. 展示时间图形才需要使用 rangeQuery 范围查询, 返回时间区间内计算的所有数据。

图表

  1. 自定义 Dashboard 需要避免一个面板图形中太多的线条, 5 条以内比较合理, 以免图表看不清及卡顿. 对于容器实例级别的指标可以用 topk 函数限制曲线数量;
  2. 对于模板变量下拉, 其语句每次打开 Dashboard之前都会查询 series 接口, 若因为返回结果太大而加载 Dashboard 太慢, 则需要使用 recording_rule 优化;
  3. Grafana 官网面板中心有大量面板可以导入及参考。

recording_rule

对于页面上展示的热查询, 如果涉及时间序列太多, 则会变得缓慢. 一般涉及时间序列大于 10K 的 InstantQuery 和时间序列大于 1K 的 RangeQuery, 是比较昂贵的。

Prometheus 提供了recording_rule功能, 其会定时如 1 分钟对 promQL 表达式定时执行 instantQuery, 执行结果形成新的时间序列, 数据来自内存 TSDB, 完全内存操作, 性能很高。

  1. 例子 1 Istio 可观测性最佳实践
  2. 例子 2 prometheus-kubernetes
  3. 命名 维度:指标名:聚合方式 , 如 server:rpc_request_started_total:rate5m. 参见:

https://prometheus.io/docs/practices/rules/#naming-and-aggregation

alert rule

  1. Awesome Prometheus alerts 包含各种 exporter 导出的指标的告警规则例子;
  2. rule 也遵循 label based 机制, 触发告警时, label 集合是 rule 中自定义的静态 label 加上语句查询结果的 label 组合. 在 alertmanager 中根据 label 进行去重、分组、通知路由、静默、抑制;
  3. 一些告警语句与流量周期相关, 可以在 alertmanager 的配置 route 级别的周期性屏蔽, 也可以在 rule 表达式中使用 on hour/day/month 函数周期屏蔽, 如以下 rule 会在每天 23 点~9 点总是不触发。
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
expr: |
 xxx < 100
  # 增加条件每天23~9点总是不触发, 转换为UTC则 hour 15~1点
  and on() (hour() <= 15 and hour()>= 1)
  1. annotation 中支持 go template 语法, 内置query 函数可以执行额外的查询语句, 这是丰富告警信息的利器, 比如下方配置的语句可以在异常率告警中带上错误码、数量和错误码描述.
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
annotations:
 description: |
  {{- with printf "sum(increase(rpc_server_handled_total{tenant_id='%s', app='%s', server='%s',namespace='%s', callee_service='%s', callee_method='%s',code_type='exception'}[1m])) by (code_type, code, code_desc)> 0" $labels.teannt_id $labels.app $labels.server $labels.namespace $labels.callee_service $labels.callee_method | query -}}
          {{- range $i,$v := . -}}
          错误码:{{ $v.Labels.code }},数量:{{ printf "%.0f" $v.Value -}},描述:{{ $v.Labels.code_desc }}
          {{- end -}}
          {{- end -}}
  1. 可以使用promtool 对 alert rule 进行单元测试, 用于验证告警规则有效性及 template 渲染。

存储

Prometheus tsdb的压缩算法基于Facebook Gorilla 论文, 可以将每个样本点 time+value 16 字节压缩至平均 1.3~2 字节, time 采用 delta-of-delta 方式压缩率比较稳定, value 采用 XOR 方式压缩率跟真实数据相关, 可通过自身指标计算得到实际的样本点大小值。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
(rate(prometheus_tsdb_compaction_chunk_size_bytes_sum[2h]) / rate(prometheus_tsdb_compaction_chunk_samples_sum[2h]))

Thanos

  1. 集群中的 Prometheus 需要设置不同的 external-label, 其分片机制依赖 external-label relabel 进行垂直分片. 历史数据基于时间分片
  2. 性能优化: Thanos Query 执行 promQL 时通过 gRPC 双向流方法流式获取样本数据, 如果涉及 Store 节点还需 Range 请求对象存储, 而 Prometheus 直接通过内存或磁盘。由于多次网络调用,Thanos Query 性能会比直接查询 Prometheus 要慢一些, 优化手段主要有:
    1. Query-Frontend 组件对 RangeQuery 按时间分解并行查询和查询缓存;
    2. Store 节点基于 external-label relabel 分片和基于时间范围的分片;
    3. Store 节点开启 index cache, bucket cache;
    4. Compact 节点压缩合并 block 和降采样。
参考:
  1. https://prometheus.io/docs/practices/naming/
  2. https://github.com/OpenObservability/OpenMetrics/blob/main/specification/OpenMetrics.md
  3. 《Prometheus: Up & Running》Brian Brazil
  4. https://www.robustperception.io/blog
  5. https://prometheus.io/blog/
  6. https://github.com/cncf/tag-observability/blob/main/whitepaper.md
  7. https://github.com/timescale/tsbs

最近热文:

开发常用的缩写 你能看懂几个?

TencentOCR 斩获 ICDAR 2021 三项冠军

腾讯程序员视频号最新视频

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-11-15,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 腾讯技术工程 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
开源监控系统 Prometheus 最佳实践
作者:jimmiehan(韩金明)  腾讯PCG后台开发工程师 ,Prometheus/Thanos contributor Prometheus 是目前最流行的开源监控系统之一, 这里以我在基于 Prometheus 构建天机阁 2.0Metrics 子系统的实践谈一谈 Prometheus 的一些最佳实践, 最佳实践的理念是 Prometheus 系统简单稳定高效运行的关键。(注: 天机阁 2.0 是新一代云原生可观测性系统) PART ONE 埋点思路 最好将原始指标暴露给 Prometheus
腾源会
2021/11/17
1.5K0
Prometheus 监控实践
监控作为底层基础设施的一环,是保障生产环境服务稳定性不可或缺的一部分,线上问题从发现到定位再到解决,通过监控和告警手段可以有效地覆盖了「发现」和「定位」,甚至可以通过故障自愈等手段实现解决,服务开发和运维人员能及时有效地发现服务运行的异常,从而更有效率地排查和解决问题。
xjjdog
2020/11/09
1.6K0
Prometheus 监控实践
运维锅总详解Prometheus
Prometheus 是一个开源的系统监控和报警工具,最初由 SoundCloud 开发,现在是 Cloud Native Computing Foundation (CNCF) 的一个项目。它特别适合用于动态和分布式环境,尤其是在云原生应用中。以下是 Prometheus 的一些关键特性和组件:
锅总
2024/07/04
1.3K0
运维锅总详解Prometheus
监控神器Prometheus用不对,也就是把新手村的剑
监控系统的历史悠久,是一个很成熟的方向,而 Prometheus 作为新生代的开源监控系统,慢慢成为了云原生体系的事实标准,也证明了其设计很受欢迎。
lyb-geek
2020/07/14
3.6K0
监控神器Prometheus用不对,也就是把新手村的剑
【实践】2.Prometheus命令和配置详解
Prometheus配置方式有两种: (1)命令行,用来配置不可变命令参数,主要是Prometheus运行参数,比如数据存储位置 (2)配置文件,用来配置Prometheus应用参数,比如数据采集,报警对接
辉哥
2021/04/01
4.7K0
高可用 Prometheus 的常见问题
监控系统的历史悠久,是一个很成熟的方向,而 Prometheus 作为新生代的开源监控系统,慢慢成为了云原生体系的事实标准,也证明了其设计很受欢迎。本文主要分享在 prometheus 实践中遇到的一些问题和思考
米开朗基杨
2020/10/30
3.2K0
高可用 Prometheus 的常见问题
Prometheus监控学习笔记之全面学习Prometheus
Prometheus是继Kubernetes后第2个正式加入CNCF基金会的项目,容器和云原生领域事实的监控标准解决方案。在这次分享将从Prometheus的基础说起,学习和了解Prometheus强大的数据处理能力,了解如何使用Prometheus进行白盒和黑盒监控,以及Prometheus在规模化监控下的解决方案等。最后将从0开始构建完整的Kubernetes监控架构。
Jetpropelledsnake21
2019/01/28
3K0
使用 Prometheus + Grafana 打造 TiDB 监控整合方案
Prometheus + Grafana 作为一套普适的监控系统广泛应用于各种应用环境中。
PingCAP
2021/06/07
2.3K0
Prometheus性能调优-什么是高基数问题以及如何解决?
•PrometheusMissingRuleEvaluations•PrometheusRuleFailures
东风微鸣
2022/12/01
2.2K0
Prometheus性能调优-什么是高基数问题以及如何解决?
基于Prometheus+Grafana打造企业级Flink监控系统
在进入本文之前,我先问大家一个问题,你们公司或者业务系统上是如何对生产集群上的数据同步任务、实时计算任务或者是调度任务本身的执行情况和日志进行监控的呢?可能你会回答是自研或者ELK系统或者Zabbix系统。
王知无-import_bigdata
2021/01/20
2.3K0
基于Prometheus+Grafana打造企业级Flink监控系统
实战 Prometheus 搭建监控系统
Prometheus 是一款基于时序数据库的开源监控告警系统,说起 Prometheus 则不得不提 SoundCloud,这是一个在线音乐分享的平台,类似于做视频分享的 YouTube,由于他们在微服务架构的道路上越走越远,出现了成百上千的服务,使用传统的监控系统 StatsD 和 Graphite 存在大量的局限性,于是他们在 2012 年开始着手开发一套全新的监控系统。Prometheus 的原作者是 Matt T. Proud,他也是在 2012 年加入 SoundCloud 的,实际上,在加入 SoundCloud 之前,Matt 一直就职于 Google,他从 Google 的集群管理器 Borg 和它的监控系统 Borgmon 中获取灵感,开发了开源的监控系统 Prometheus,和 Google 的很多项目一样,使用的编程语言是 Go。
Spark学习技巧
2021/03/05
1.3K0
实战 Prometheus 搭建监控系统
Prometheus 如何做到“活学活用”,大牛总结的避坑指南
监控系统的历史悠久,是一个很成熟的方向,而 Prometheus 作为新生代的开源监控系统,慢慢成为了云原生体系的事实标准,也证明了其设计很受欢迎。
民工哥
2020/09/15
9280
Prometheus 如何做到“活学活用”,大牛总结的避坑指南
如何精简 Prometheus 的指标和存储占用
随着 Prometheus 监控的组件、数量、指标越来越多,Prometheus 对计算性能的要求会越来越高,存储占用也会越来越多。
东风微鸣
2022/12/01
1.5K0
如何精简 Prometheus 的指标和存储占用
Prometheus 标签全揭秘:从数据源到仪表盘
前言:本文通俗易懂地介绍了 Prometheus 标签,并且直击用户痛点,提供避坑指南。以下内容由腾讯云 Prometheus 团队雷畅、徐帅、赵志勇共同创作。
腾讯云可观测平台
2025/02/11
2560
Prometheus 标签全揭秘:从数据源到仪表盘
Prometheus 监控架构 -- 生产级别
Prometheus 是由前 Google 工程师从 2012 年开始在 Soundcloud 以开源软件的形式进行研发的系统监控和告警工具包,自此以后,许多公司和组织都采用了 Prometheus 作为监控告警工具。Prometheus 的开发者和用户社区非常活跃,它现在是一个独立的开源项目,可以独立于任何公司进行维护。为了证明这一点,Prometheus 于 2016 年 5 月加入 CNCF 基金会,成为继 Kubernetes 之后的第二个 CNCF 托管项目.
用户3013098
2022/06/01
7050
Prometheus 监控架构  -- 生产级别
使用 Thanos 实现 Prometheus 的高可用
前面我们已经学习了 Prometheus 的使用,了解了基本的 PromQL 语句以及结合 Grafana 来进行监控图表展示,通过 AlertManager 来进行报警,这些工具结合起来已经可以帮助我们搭建一套比较完整的监控报警系统了,但是也仅仅局限于测试环境,对于生产环境来说则还有许多需要改进的地方,其中一个非常重要的就是 Prometheus 的高可用。
我是阳明
2020/06/15
8.1K1
使用 Thanos 实现 Prometheus 的高可用
构建企业级监控平台系列(十二):Prometheus 入门与安装
Prometheus 是一个开源的服务监控系统和时序数据库,最初由SoundCloud开发的开源的系统监控和报警工具包。自2012年诞生以来,被许多公司和组织采用,该项目拥有非常活跃的社区和开发者。Prometheus 现在是一个独立的开源项目,独立于任何公司进行维护。为了证明这一点,Prometheus 于2016年加入了云原生计算基金会CNCF,成为了继Kubernetes之后的第二个CNCF托管项目。
民工哥
2023/10/23
1.1K0
构建企业级监控平台系列(十二):Prometheus 入门与安装
开源监控系统Prometheus介绍
Prometheus是CNCF的一个开源项目,Google BorgMon监控系统的开源版本,是一个系统和服务的监控系统。周期性采集metrics指标,匹配规则和展示结果,以及触发某些条件的告警发送。
用户2937493
2019/09/11
2.4K0
开源监控系统Prometheus介绍
Prometheus 基础入门 (一)
Prometheus是由SoundCloud开发的开源监控报警系统和时序列数据库(TSDB)。Prometheus使用Go语言开发,是Google BorgMon监控系统的开源版本。2016年由Google发起Linux基金会旗下的原生云基金会(Cloud Native Computing Foundation), 将Prometheus纳入其下第二大开源项目。Prometheus和Heapster(Heapster是K8S的一个子项目,用于获取集群的性能数据。)相比功能更完善、更全面。
Kevin song
2023/02/09
1.4K0
Prometheus 基础入门 (一)
Prometheus监控实战
2.3 Prometheus数据模型 2.3.1 指标名称 2.3.2 标签 2.3.3 采样数据 2.3.4 符号表示 2.3.5 保留时间
yeedomliu
2021/07/19
9.6K0
相关推荐
开源监控系统 Prometheus 最佳实践
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验