前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Python使用matplotlib库绘图保存

Python使用matplotlib库绘图保存

作者头像
Cloudox
发布2021-11-23 16:50:23
8490
发布2021-11-23 16:50:23
举报
文章被收录于专栏:月亮与二进制

在深度学习训练过程中,常常需要根据训练的loss和准确率来决定后续的优化方向,我们会在训练过程中得到每一轮的loss和准确率,由此可以看出一个大概的趋势,但要更直观的看到训练中的变化,以及在何时达到最佳效果(再往后往往会过拟合),还是绘制成图表来看最好。

matplotlib就是一个好用且常用的绘图库,如果没有安装的可以用pip安装一下:

代码语言:javascript
复制
$ pip install matplotlib

安装好后就可以使用了。

假设我们手头有训练过程中训练集和测试集的准确率数据,就可以用来绘图了,代码如下:

代码语言:javascript
复制
# -- coding: utf-8 --
import matplotlib.pyplot as plt

train_acc = [0.3328, 0.44612, 0.5021, 0.5446, 0.57214, 0.59706, 0.6206, 0.63282, 0.65218, 0.66634, 0.6777, 0.689, 0.6975, 0.7055, 0.71368, 0.72274, 0.72604, 0.72982, 0.73488, 0.7394, 0.741, 0.74424, 0.74892, 0.75082, 0.75492, 0.7555, 0.75822, 0.76122, 0.76104, 0.76428, 0.76584, 0.76736, 0.76706, 0.7686, 0.77036, 0.77186, 0.77248, 0.77298, 0.77522, 0.77556, 0.77624, 0.77592, 0.7769, 0.77786, 0.78014, 0.7809, 0.78072, 0.78278, 0.77998, 0.7809, 0.78232, 0.78466, 0.78268, 0.78638, 0.7867, 0.7871, 0.78422, 0.78802, 0.7874, 0.78712, 0.78844, 0.7895, 0.789, 0.78934, 0.78796, 0.78984, 0.79012, 0.78978, 0.79072, 0.79046, 0.78968, 0.79274, 0.79064, 0.78992, 0.79008, 0.79272, 0.7919, 0.79188, 0.79222, 0.79216, 0.79148, 0.79542, 0.7958, 0.79028, 0.793, 0.79338, 0.7943, 0.794, 0.79306, 0.7938, 0.79066, 0.79292, 0.79334, 0.79326, 0.79126, 0.79358, 0.79346, 0.79298, 0.79146, 0.79056, 0.79148, 0.79254, 0.79132, 0.79166, 0.78868, 0.7899, 0.78958, 0.79074, 0.79116, 0.79038, 0.7864, 0.78942, 0.78864, 0.7879, 0.7885, 0.78698, 0.78954, 0.78552, 0.78572, 0.78448, 0.78138, 0.78214, 0.78128, 0.78274, 0.78042, 0.78336, 0.78154, 0.7796, 0.77632, 0.7769, 0.77684, 0.77654, 0.77556, 0.7748, 0.77268, 0.7738, 0.77242, 0.76968, 0.76926, 0.768, 0.76986, 0.76944, 0.76718, 0.769, 0.76428, 0.76332, 0.7621, 0.76826, 0.76108, 0.75932, 0.75854, 0.75638, 0.75878, 0.7561, 0.75336, 0.75304, 0.75174, 0.751, 0.74988, 0.7502, 0.7506, 0.74376, 0.74148, 0.74348, 0.73974, 0.73992, 0.73722, 0.73576, 0.73392, 0.73308, 0.73194, 0.72748, 0.72538, 0.72506, 0.72218, 0.72112, 0.71956, 0.71576, 0.71718, 0.71526, 0.70878, 0.7073, 0.71062, 0.70376, 0.70372, 0.70012, 0.69818, 0.69692, 0.6917, 0.68564, 0.69178, 0.68422, 0.68548, 0.68564, 0.67906, 0.6783, 0.67342, 0.67052, 0.66476, 0.66408]
val_acc = [0.4429, 0.4978, 0.549, 0.5856, 0.5999, 0.6116, 0.6512, 0.6599, 0.676, 0.6967, 0.691, 0.7129, 0.7156, 0.7054, 0.7155, 0.7311, 0.7341, 0.7421, 0.7333, 0.7379, 0.7496, 0.7415, 0.7532, 0.7555, 0.7617, 0.7527, 0.7406, 0.7658, 0.7694, 0.7671, 0.7692, 0.769, 0.7749, 0.7662, 0.7671, 0.773, 0.7715, 0.7664, 0.7768, 0.7616, 0.7788, 0.7793, 0.7829, 0.786, 0.7785, 0.788, 0.7878, 0.7791, 0.783, 0.7865, 0.7834, 0.7714, 0.7837, 0.7615, 0.753, 0.7829, 0.7734, 0.7766, 0.7866, 0.782, 0.7906, 0.7844, 0.7892, 0.7775, 0.7702, 0.7896, 0.7833, 0.7816, 0.789, 0.794, 0.7875, 0.7834, 0.7791, 0.765, 0.7848, 0.7796, 0.7922, 0.7915, 0.7854, 0.7931, 0.7909, 0.7692, 0.7818, 0.7928, 0.7906, 0.763, 0.7937, 0.7867, 0.779, 0.7761, 0.793, 0.7882, 0.7781, 0.7901, 0.7682, 0.7828, 0.7835, 0.7764, 0.7534, 0.7867, 0.7502, 0.7761, 0.7638, 0.7849, 0.7587, 0.7892, 0.7682, 0.7929, 0.7529, 0.7705, 0.7658, 0.7879, 0.7572, 0.7479, 0.7697, 0.7586, 0.775, 0.7887, 0.7722, 0.7821, 0.7685, 0.7774, 0.7749, 0.7867, 0.7695, 0.7315, 0.7856, 0.7315, 0.7714, 0.7508, 0.7726, 0.7626, 0.77, 0.7807, 0.7533, 0.7532, 0.7825, 0.781, 0.719, 0.7657, 0.7457, 0.7746, 0.7624, 0.76, 0.7334, 0.7478, 0.7666, 0.7193, 0.7343, 0.7496, 0.7662, 0.7463, 0.7703, 0.7617, 0.7618, 0.7576, 0.7341, 0.7316, 0.7568, 0.7174, 0.7439, 0.7291, 0.7481, 0.7576, 0.7471, 0.7384, 0.7497, 0.7097, 0.7368, 0.6767, 0.7593, 0.7441, 0.7393, 0.7201, 0.7369, 0.7197, 0.7085, 0.6579, 0.7189, 0.7048, 0.6958, 0.6036, 0.7399, 0.676, 0.6988, 0.7279, 0.695, 0.6861, 0.6351, 0.7474, 0.7283, 0.6859, 0.6923, 0.6839, 0.6722, 0.6467, 0.6804, 0.6749, 0.5968, 0.6334]

epochs = range(1, len(train_acc)+1)
plt.plot(epochs, train_acc, 'bo', label = 'Training acc')
plt.plot(epochs, val_acc, 'r', label = 'Validation acc')
plt.title('Training and validation accuracy')
plt.legend() # 添加图例
plt.savefig("examples.png")
plt.show()

代码中我给出了两份准确率数组,表示训练过程中每一轮的准确率,然后使用plt绘图,plot就是绘图函数,参数包含了横坐标、纵坐标、绘制内容(bo表示蓝点,r表示红线,这个可以在Matplotlib 用户指南查看)、标签名(这个标签名就可以被图例使用了)。title函数表示图标的标题,legend函数表示要添加图例,可以设置位置,默认右下角。代码中既保存了图像,也做了显示。因为如果在服务器训练时想要绘图的话,很可能没法直接看,那就要保存然后再查看了。

这里尤其要注意的是,想要成功保存的话,一定要把保存语句写在show语句之前!!!否则你保存下来的将是一个新的空白图。

绘制的结果如下图所示:

绘图结果

从图中就可以很直观地感受到在训练70轮左右的时候就到达准确率的最高点了,在78%左右。

当然,也可以同时展示多张图,比如在训练后立马同时绘制准确率和loss的图:

代码语言:javascript
复制
# -- coding: utf-8 --
import matplotlib.pyplot as plt

# 用keras训练后立即绘制
model = get_model() # 获取keras构建的模型
hist = model.fit(........) # 训练参数略去不表
train_acc = hist.history['acc']
val_acc = hist.history['val_acc']
train_loss = hist.history['loss']
val_loss = hist.history['val_loss']

epochs = range(1, len(train_acc)+1)
plt.plot(epochs, train_acc, 'bo', label = 'Training acc')
plt.plot(epochs, val_acc, 'r', label = 'Validation acc')
plt.title('Training and validation accuracy')
plt.legend()

plt.figure() # 新建一个图

plt.plot(epochs, train_loss, 'bo', label = 'Training loss')
plt.plot(epochs, val_loss, 'r', label = 'Validation loss')
plt.title('Training and validation loss')
plt.legend()

plt.show()

这里中间用figure函数新建了一个图用来绘制第二张loss图。如果想要保存两张图的话,同样记得要在figure和show之前保存。


本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2018/11/1 下,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档