前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >番外篇: 图像梯度

番外篇: 图像梯度

作者头像
CodecWang
发布于 2021-12-07 07:32:34
发布于 2021-12-07 07:32:34
66200
代码可运行
举报
文章被收录于专栏:CodecWangCodecWang
运行总次数:0
代码可运行

了解图像梯度和边缘检测的相关概念。图片等可到文末引用处下载。

还记得前面平滑图像中提到的滤波与模糊的区别吗?我们说低通滤波器是模糊,高通滤波器是锐化,这节我们就来看看高通滤波器。

图像梯度

如果你还记得高数中用一阶导数来求极值的话,就很容易理解了:把图片想象成连续函数,因为边缘部分的像素值是与旁边像素明显有区别的,所以对图片局部求极值,就可以得到整幅图片的边缘信息了。不过图片是二维的离散函数,导数就变成了差分,这个差分就称为图像的梯度。

当然,大部分人应该是早忘记高数了( ̄▽ ̄)",所以看不懂的话,就把上面的解释划掉,我们重新从卷积的角度来看看。

垂直边缘提取

滤波是应用卷积来实现的,卷积的关键就是卷积核,我们来考察下面这个卷积核:

这个核是用来提取图片中的垂直边缘的,怎么做到的呢?看下图:

当前列左右两侧的元素进行差分,由于边缘的值明显小于(或大于)周边像素,所以边缘的差分结果会明显不同,这样就提取出了垂直边缘。同理,把上面那个矩阵转置一下,就是提取水平边缘。这种差分操作就称为图像的梯度计算:

还记得滤波函数cv2.filter2D()吗?(番外篇:卷积基础)我们来手动实现上面的功能:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
img = cv2.imread('sudoku.jpg', 0)

# 自己进行垂直边缘提取
kernel = np.array([[-1, 0, 1],
                   [-2, 0, 2],
                   [-1, 0, 1]], dtype=np.float32)
dst_v = cv2.filter2D(img, -1, kernel)
# 自己进行水平边缘提取
dst_h = cv2.filter2D(img, -1, kernel.T)
# 横向并排对比显示
cv2.imshow('edge', np.hstack((img, dst_v, dst_h)))
cv2.waitKey(0)Copy to clipboardErrorCopied

Sobel算子

上面的这种差分方法就叫Sobel算子,它先在垂直方向计算梯度

,再在水平方向计算梯度

,最后求出总梯度:

我们可以把前面的代码用Sobel算子更简单地实现:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
sobelx = cv2.Sobel(img, -1, 1, 0, ksize=3)  # 只计算x方向
sobely = cv2.Sobel(img, -1, 0, 1, ksize=3)  # 只计算y方向Copy to clipboardErrorCopied

经验之谈:很多人疑问,Sobel算子的卷积核这几个值是怎么来的呢?事实上,并没有规定,你可以用你自己的。

比如,最初只利用领域间的原始差值来检测边缘的Prewitt算子

还有比Sobel更好用的Scharr算子,大家可以了解下:

这些算法都是一阶边缘检测的代表,网上也有算子之间的对比资料,有兴趣的可参考文末引用。

Laplacian算子

高数中用一阶导数求极值,在这些极值的地方,二阶导数为0,所以也可以通过求二阶导计算梯度:

一维的一阶和二阶差分公式分别为:

提取前面的系数,那么一维的Laplacian滤波核是:

而对于二维函数f(x,y),两个方向的二阶差分分别是:

合在一起就是:

同样提取前面的系数,那么二维的Laplacian滤波核就是:

这就是Laplacian算子的图像卷积模板,有些资料中在此基础上考虑斜对角情况,将卷积核拓展为:

OpenCV中直接使用cv2.Laplacian()函数:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
laplacian = cv2.Laplacian(img, -1)  # 使用Laplacian算子Copy to clipboardErrorCopied

Laplacian算子是二阶边缘检测的典型代表,一/二阶边缘检测各有优缺点,大家可自行了解。

练习

  1. (选做)同志们有空补补高数姿势(知识)呗!(✿◕‿◕✿)

引用

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2021-12-07,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
[Python图像处理] 十七.图像锐化与边缘检测之Roberts、Prewitt、Sobel和Laplacian算子
该系列文章是讲解Python OpenCV图像处理知识,前期主要讲解图像入门、OpenCV基础用法,中期讲解图像处理的各种算法,包括图像锐化算子、图像增强技术、图像分割等,后期结合深度学习研究图像识别、图像分类应用。希望文章对您有所帮助,如果有不足之处,还请海涵~
Eastmount
2023/02/28
2.7K0
[Python图像处理] 十七.图像锐化与边缘检测之Roberts、Prewitt、Sobel和Laplacian算子
基于OpenCV的图像梯度与边缘检测!
严格的说,梯度计算需要求导数。但是图像梯度的计算,是通过计算像素值的差得到梯度的近似值。图像梯度表示的是图像变化的速度,反映了图像的边缘信息。
Datawhale
2020/07/09
4.7K0
基于OpenCV的图像梯度与边缘检测!
[Python图像处理] 十八.图像锐化与边缘检测之Scharr算子、Canny算子和LOG算子
该系列文章是讲解Python OpenCV图像处理知识,前期主要讲解图像入门、OpenCV基础用法,中期讲解图像处理的各种算法,包括图像锐化算子、图像增强技术、图像分割等,后期结合深度学习研究图像识别、图像分类应用。希望文章对您有所帮助,如果有不足之处,还请海涵~
Eastmount
2023/09/01
8300
[Python图像处理] 十八.图像锐化与边缘检测之Scharr算子、Canny算子和LOG算子
Python opencv图像处理基础总结(五) 图像金字塔 图像梯度 Canny算法边缘提取
图像金字塔是图像多尺度表达的一种,是一种以多分辨率来解释图像的有效且概念简单的结构。一幅图像的金字塔是一系列以金字塔形状排列的分辨率逐步降低,且来源于同一张原始图的图像集合。其通过梯次向下采样获得,直到达到某个终止条件才停止采样。我们将一层一层的图像比喻成金字塔,层级越高,则图像越小,分辨率越低
叶庭云
2022/05/09
7320
Python opencv图像处理基础总结(五) 图像金字塔 图像梯度 Canny算法边缘提取
Python opencv图像处理基础总结(五) 图像金字塔 图像梯度 Canny算法边缘提取
图像金字塔是图像多尺度表达的一种,是一种以多分辨率来解释图像的有效但概念简单的结构。一幅图像的金字塔是一系列以金字塔形状排列的分辨率逐步降低,且来源于同一张原始图的图像集合。其通过梯次向下采样获得,直到达到某个终止条件才停止采样。我们将一层一层的图像比喻成金字塔,层级越高,则图像越小,分辨率越低
叶庭云
2020/09/17
1.3K0
Python opencv图像处理基础总结(五)  图像金字塔  图像梯度  Canny算法边缘提取
CV学习笔记(十四):边缘检测
在这一篇文章里我们将去学习在计算机视觉中边缘检测的知识,并且去使用OpenCV来实现Canny边缘检测算法。
云时之间
2020/03/27
2.2K0
图像处理算法 面试题
其主要用于边缘检测,在技术上它是以离散型的差分算子,用来运算图像亮度函数的梯度的近似值, Sobel算子是典型的基于一阶导数的边缘检测算子,由于该算子中引入了类似局部平均的运算,因此对噪声具有平滑作用,能很好的消除噪声的影响。Sobel算子对于象素的位置的影响做了加权,与Prewitt算子、Roberts算子相比因此效果更好。Sobel算子包含两组3×3的矩阵,分别为横向及纵向模板,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。缺点是Sobel算子并没有将图像的主题与背景严格地区分开来,换言之就是Sobel算子并没有基于图像灰度进行处理,由于Sobel算子并没有严格地模拟人的视觉生理特征,所以提取的图像轮廓有时并不能令人满意。
全栈程序员站长
2022/08/30
8050
图像处理常用算法—6个算子 !!
需要说明的是:边缘和物体间的边界并不等同,边缘指的是图像中像素的值有突变的地方,而物体间的边界指的是现实场景中的存在于物体之间的边界。
JOYCE_Leo16
2024/03/19
1.2K0
图像处理常用算法—6个算子 !!
CV学习笔记(十三):图像梯度
在高等数学中我们了解到梯度不是一个实数,他是一个向量,是有方向有大小的。现在以一个二元函数来举例,假设一二元函数f(x,y),在某点的梯度有:
云时之间
2020/03/19
2.5K0
OpenCV 边缘检测
Canny 边缘检测算子,其算法步骤大体如下: 1) 用高斯滤波器对输入图像做平滑处理 (大小为 5x5 的高斯核)
AI异构
2020/07/29
1K0
OpenCV 边缘检测
OpenCV与图像处理(二)
以下代码均在python3.6,opencv4.2.0环境下试了跑一遍,可直接运行。
Must
2020/07/28
7070
OpenCV与图像处理(二)
OpenCV图像处理笔记(二):图片操作进阶
一、图像模糊 1、模糊原理 Smooth/Blur 是图像处理中最简单和常用的操作之一 使用该操作的原因之一就为了给图像预处理时候减低噪声 使用Smooth/Blur操作其背后是数学的卷积计算 通常这
MiChong
2020/09/24
1.2K0
OpenCV图像处理笔记(二):图片操作进阶
opencv+Recorder︱OpenCV 中的 Canny 边界检测+轮廓、拉普拉斯变换
图像边缘检测能够大幅减少数据量,在保留重要的结构属性的同时,剔除弱相关信息。 在深度学习出现之前,传统的Sobel滤波器,Canny检测器具有广泛的应用,但是这些检测器只考虑到局部的急剧变化,特别是颜色、亮度等的急剧变化,通过这些特征来找边缘。 这些特征很难模拟较为复杂的场景,如伯克利的分割数据集(Berkeley segmentation Dataset),仅通过亮度、颜色变化并不足以把边缘检测做好。2013年,开始有人使用数据驱动的方法来学习怎样联合颜色、亮度、梯度这些特征来做边缘检测。 为了更好地评测边缘检测算法,伯克利研究组建立了一个国际公认的评测集,叫做Berkeley Segmentation Benchmark。从图中的结果可以看出,即使可以学习颜色、亮度、梯度等low-level特征,但是在特殊场景下,仅凭这样的特征很难做到鲁棒的检测。比如上图的动物图像,我们需要用一些high-level 比如 object-level的信息才能够把中间的细节纹理去掉,使其更加符合人的认知过程(举个形象的例子,就好像画家在画这个物体的时候,更倾向于只画外面这些轮廓,而把里面的细节给忽略掉)。 .
悟乙己
2019/05/26
3.1K0
CV学习笔记(十四):边缘检测
在这一篇文章里我们将去学习在计算机视觉中边缘检测的知识,并且去使用OpenCV来实现Canny边缘检测算法。
云时之间
2020/04/01
5260
CV学习笔记(十四):边缘检测
OpenCV边缘检测与视频读写
边缘检测的目的是标识数字图像中亮度变化明显的点。图像属性中的显著变化通常反映了属性的重要事件和变化。边缘的表现形式:
@小森
2024/03/15
1260
OpenCV边缘检测与视频读写
【OpenCV】Chapter5.空间域图像滤波
边界扩充顾名思义就是扩大图像的边界。 OpenCV 中提供了函数 cv.copyMakeBorder 进行边界扩充方式。
zstar
2022/09/23
5100
【OpenCV】Chapter5.空间域图像滤波
【OpenCV入门教程之十二】OpenCV边缘检测:Canny算子,Sobel算子,Laplace算子,Scharr滤波器合辑
效果图看完,我们来唠唠嗑。 首先,需要说明的是,浅墨这篇文章最后的示例代码是采用两周前刚刚发布的2.4.9来书写的。里面的lib都已经改成了2.4.9版本的。如果大家需要运行的话,要么配置好2.4.9.要么把浅墨在工程中包含的末尾数字为249的各种lib改成之前的248或者你对应的OpenCV版本。 不然会提示: LINK : fatal error LNK1181: 无法打开输入文件“opencv_calib3d248.lib”之类的错误。 OpenCV 2.4.9的配置和之前的2.4.8差不多,如果还是不太清楚,具体可以参考浅墨修改过的对应2.4.9版的配置文章: 【OpenCV入门教程之一】 安装OpenCV:OpenCV 2.4.8或2.4.9 +VS 开发环境配置 第二,给大家分享一个OpenCV中写代码时节约时间的小常识。其实OpenCV中,不用namedWindow,直接imshow就可以显示出窗口。大家看下文的示例代码就可以发现,浅墨在写代码的时候并没有用namedWindow,遇到想显示出来的Mat变量直接imshow。我们一般是为了规范,才先用namedWindow创建窗口,再imshow出它来,因为我们还有需要用到指定窗口名称的地方,比如用到trackbar的时候。而一般情况想显示一个Mat变量的图片的话,直接imshow就可以啦。 OK,开始正文吧~ 一、关于边缘检测 在具体介绍之前,先来一起看看边缘检测的一般步骤吧。 1)滤波:边缘检测的算法主要是基于图像强度的一阶和二阶导数,但导数通常对噪声很敏感,因此必须采用滤波器来改善与噪声有关的边缘检测器的性能。常见的滤波方法主要有高斯滤波,即采用离散化的高斯函数产生一组归一化的高斯核(具体见“高斯滤波原理及其编程离散化实现方法”一文),然后基于高斯核函数对图像灰度矩阵的每一点进行加权求和(具体程序实现见下文)。 2)增强:增强边缘的基础是确定图像各点邻域强度的变化值。增强算法可以将图像灰度点邻域强度值有显著变化的点凸显出来。在具体编程实现时,可通过计算梯度幅值来确定。 3)检测:经过增强的图像,往往邻域中有很多点的梯度值比较大,而在特定的应用中,这些点并不是我们要找的边缘点,所以应该采用某种方法来对这些点进行取舍。实际工程中,常用的方法是通过阈值化方法来检测。 另外,需要注意,下文中讲到的Laplace算子,sobel算子和Scharr算子都是带方向的,所以,示例中我们分别写了X方向,Y方向和最终合成的的效果图。 OK,正餐开始,召唤canny算子。:) 二、canny算子篇 2.1 canny算子相关理论与概念讲解
全栈程序员站长
2022/09/02
1K0
【OpenCV入门教程之十二】OpenCV边缘检测:Canny算子,Sobel算子,Laplace算子,Scharr滤波器合辑
Task06 边缘检测
如上图所示,上图的第一幅图表示一张数字图片,我们对水平红线处进行求导,便可得到上图二中的关系,可以看到在边缘处有着较大的跳变。但是,导数也会受到噪声的影响,因此建议在求导数之前先对图像进行平滑处理(上图三)。
致Great
2020/05/08
5250
机器视觉检测中的图像预处理方法
本文以Dalsa sherlock软件为例,一起来了解一下视觉检测中平滑模糊的图像处理方法。
智能算法
2020/08/28
2.7K0
机器视觉检测中的图像预处理方法
Canny边缘检测算法(基于OpenCV的Java实现)
Canny边缘检测于1986年由JOHN CANNY首次在论文《A Computational Approach to Edge Detection》中提出,就此拉开了Canny边缘检测算法的序幕。
gyro永不抽风
2021/05/21
1.4K0
推荐阅读
相关推荐
[Python图像处理] 十七.图像锐化与边缘检测之Roberts、Prewitt、Sobel和Laplacian算子
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验