Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >结构光三维测量几种比较成熟的方法

结构光三维测量几种比较成熟的方法

作者头像
小白学视觉
发布于 2022-02-09 04:47:46
发布于 2022-02-09 04:47:46
2.2K0
举报

1.飞行时间发

原理:通过直接测量光传播的时间,确定物体的面型。发射脉冲信号,接受发射回的光,计算距离。

精度:毫米级

优点:原理简单,可避免阴影和遮挡等问题,且仪器便携化。

缺点:精度相对较低

2.莫尔条纹法

原理:采用两组光栅,一个主光栅,一个基准光栅,通过基准光栅来检测轮廓表面的主光栅,并根据条纹规律来推算物体的轮廓面型。

优点:过程运算量小,比较容易实现快速测量。

缺点:单从莫尔等高线不能判定物体凹凸,且光栅制作存在局限性,一般应用于工业在线质量检测。

主要两类:影像型莫尔条纹和投影型摩尔条纹

①影像型摩尔条纹

优点:测量精度高

缺点:要求较大光栅面积,至少覆盖待测轮廓,且光栅要紧挨待测物体

②投影莫尔法

将一个光栅投射到被测物体上,旁边使用另一个光栅观测行程的摩尔条纹,分析观测到的摩尔条纹,就可得到深度信息。

优点:适合测量较大物体。

3.立体视觉法

原理:由多幅图像(一般两幅)来获取物体三维几何信息的方法。主要模仿生物,几乎所有具备视觉的生物,都是两个眼睛。利用成像设备从不同位置获取被测物体的两幅图像,通过计算图像对应点间的位置偏差,来获取物体的三维几何信息。

优点:原理简单,对材质颜色等物面性质及背景光等环境因素要求较低,在超大型三维测量如建筑物测量中具有不可替代的优势。 缺点:系统需要预先标定,当测量环境发生变化时,相机参数需要重新调节。很难获取无纹理区域的信息。 应用:谷歌无人车

4.激光三角法

原理:线扫描法的一种,是用线光源投射到待测物体表面,然后经过一侧一维的扫描,获得整个物体的深度信息。

每次投射器投射一条光线到物体上,摄像机对带有光条纹的物体成像,图像上的光线特征恰恰对应投射器的光线。根据三角测量原理,可确定落在物体上光线的深度信息。

优点:原理简单,精度较高,因为使用单色性好的激光使得这种方法很少受物体表面纹理的影响相对较稳定,因此激光三角法在精度要求较高、环境较为复杂的工业检测领域,应用非常广泛

缺点:由于单帧图像得到的信息非常有限,激光三角法还需要一次一维的移动扫描,这也导致该方法效率较低

5.机构光技术

是一种主动的三角测量技术。

原理:由光源投射可控制的光点、光条或光面结构,光在物体表面形成特征点,线或者面,并由成像系统捕获图像,得到特征点的投射角,然后根据标定出的空间方向、位置参数,利用三角法测量原理计算特征点与摄像机镜头主点 之间的距离。

几种比较典型的编码结构光方式:

根据编码图案,将编码结构光分为了离散编码和连续编码两大类。

如图1.6所示。若沿着一行扫描编码结构光的数字投影条纹图案,我们会发现离散编码的图案中,码字(codeword)相同的区域其扫描轮廓线的值也是一样的,而相同码字区域的大小也很大程度上代表了重构出来的三维点云的密度;然而,在连续编码图案上,扫描轮廓线则为一条连续平滑的亮度曲线,在一个周期内每个像素都有唯一的码字,正是如此,该方法才能够获得与图像分辨率相当的点云密度。

而时间编码则是使用同一个像素点不同时间下的多个码字来确定该点的位置信息。

当然,也有一些方法结合时间和空间策略共同确定位置信息。

离散型空间编码方法大致可以分为三类:基于De aruijn的编码方法,基于M.array的编码方法,非正式的编码方法。

离散型时间编码方法主要代表有:自然二进制编码,Gray码。

离散型编码可以通过空间域或时间域进行编码实现。

空间编码和时间编码是通过码字解码的方式不同来区分的,空间编码需要周围相邻码字共同确定中心码字的位置信息,理论上讲,连续性编码方法既可以采用周期性模式,也可以采用非周期性模式。然而非周期性模式往往限制了模板大小,目前图像亮度等级有限,只有256级的情况下,无法绝对唯一地标识大范围空间。因此,周期性模式图像配合时间域交叉技术获得广泛认可。

连续性编码方案中,最具有代表性的是相移轮廓术和傅里叶轮廓术。

①傅里叶变换轮廓术

图1.7所示。轮廓测量法利用数字滤波技术,将频率较高的载波和频率较低的面形分离出来,然后进行反变换,得到包含高度信息的相位,在通过标定得到的相位高度映射关系得到三维面型信息。傅里叶变换轮廓术只用一幅图就可以得到相位值测量面型信息,但该方法计算量大,使用FFT产生的泄漏、混频、栅栏效应等会产生误差,采用数字滤波器也需要不断试错才能得到正确的参数。

②相位测量轮廓术

相位测量轮廓术(PMP:Phase Measurement Profilometry)的基本思想就是通过3F(F为相移法中采用的频率个数)张具有一定相位差的条纹图来计算相位,然后再结合相位-高度映射关系式计算出物体的高度分布。

相位测量轮廓术的原理同样如图1.7所示,将正弦光栅图像投影到物体表面,同时用成像设备采集变形条纹。

然后开始投影第二帧正弦光栅图案,同时采集这一帧的变形条纹……整个过程重复Ⅳ次,而每一帧图案相对前一帧的相移为2,r/N。

典型的几种算法被广泛应用于实际测量中,分别是三步相移法,四步相移法,五步相移法和六步相移法。

相比傅里叶轮廓术,相位测量轮廓术运算量要小很多,而且可以用查表法进一步降低运算量,这使得相位测量轮廓术在高速高精度实时三维测量中运用的非常广泛。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-10-13,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 小白学视觉 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
3D成像方法 汇总(原理解析)— 双目视觉、激光三角、结构光、ToF、光场、全息
这里要介绍的是真正的3D成像,得到物体三维的图形,是立体的图像。而不是利用人眼视觉差异的特点,错误感知到的假三维信息。
3D视觉工坊
2021/05/18
4.7K0
3D成像方法 汇总(原理解析)— 双目视觉、激光三角、结构光、ToF、光场、全息
三维重建基础
三维重建技术通过深度数据获取、预处理、点云配准与融合、生成表面等过程,把真实场景刻画成符合计算机逻辑表达的数学模型。这种模型可以对如文物保护、游戏开发、建筑设计、临床医学等研究起到辅助的作用。
流川疯
2022/05/10
7790
三维重建基础
基于EinScan-S软件的编码结构光方法空间三维模型重建
  上一篇文章基于3DSOM软件的侧影轮廓方法空间三维模型重建详细介绍了基于3DSOM的侧影轮廓方法物体空间三维模型重建;接下来,我们将在一款新的空间模型建立软件——EinScan-S中,完成一种新的空间三维模型重建方法——编码结构光方法。
疯狂学习GIS
2022/08/10
7650
基于EinScan-S软件的编码结构光方法空间三维模型重建
三维重建技术综述
来源丨https://blog.csdn.net/qq_30815237/article/details/91897736
3D视觉工坊
2021/01/13
2.8K0
三维重建技术综述
三种超精密光学结构表面形貌测量方法
共聚焦显微扫描技术发展于上世纪80 年代,其测量原理如图所示,激光由光源发出,经分光镜和显微物镜投射在待测品表面上,待测品表面反射回的光束沿着光路结构到达共聚焦针孔滤光片。此时,只有在待测品的表面刚好处于聚焦平面时,反射光才能穿过共聚焦针孔滤光片,被光强倍增管感应到,否则,当待测品表面处于离焦的位置时,反射光会被滤光片吸收。测量物体时,PZT 驱动物镜改变物距,调节待测品表面与焦平面的距离,越靠近焦平面,光电倍增管感应到的光信号越强。当光信号感应到达峰值时,表示待测品表面到达焦平面位置,投射在测量表面上的激光汇聚成一点,根据仪器与该测量点的数学关系可以计算该点的高度信息。对待测品上的各个点依次测量,就可以获求取待测品的整个形貌高度。
睐芯科技LightSense
2024/07/24
2840
智能制造-逆向工程-三维测量-标定
光学三维测量是一项集机械,电气,光学,信息工程技术于一体的前沿技术。该技术应用光学成像原理,对现实世界的物体进行扫描,通过复杂的数据分析、数字图像处理得到目标物体的三维形态数据。该技术几乎不受目标物体的形状限制,经过处理的虚拟数据具有广泛的应用价值。本次设计课题为双目三维光学测量硬件系统设计。本文以格雷码结构光三维测量为编码原理,用SolidWorks建立三维模型,MeshLab处理点云数据图像。硬件方面,除了PC,核心器件为美国德州仪器公司研发的DLP4500系列投影仪,以其先进的DMD(数字微镜器件)技术进行光栅的投射。相位移基本算法:通过采集10张光栅条纹图像相位初值,来获取被测物体的表面三维数据。
小白学视觉
2022/04/06
8130
智能制造-逆向工程-三维测量-标定
系列篇|结构光三维重建——相移法基本原理
在结构光三维重建中,最常见的方法就是相移法,相移是通过投影一系列相移光栅图像编码,从而得到物体表面一点在投影仪图片上的相对位置或者绝对位置。下面,笔者将详细介绍如何制作相移编码图片,以及如何对获取的相移图片进行解码,最后笔者将粗浅的谈谈相移相比其他方法(如格雷码)有什么优势。
3D视觉工坊
2020/12/11
3.9K0
系列篇|结构光三维重建——相移法基本原理
经典相位法三维轮廓测量模型
在结构光三维测量中,之前笔者介绍了关于把投影看做相机的逆的模型,这次笔者要介绍一个经典相位三维轮廓测量模型,有很多相位三维轮廓测量模型都是在经典相位测量模型上的改进。
3D视觉工坊
2020/12/11
8130
经典相位法三维轮廓测量模型
深度解析机器视觉四大光学成像方法
工业4.0时代,三维机器视觉备受关注,目前,三维机器视觉成像方法主要分为光学成像法和非光学成像法,这之中,光学成像法是市场主流。
一点人工一点智能
2023/03/17
1.1K0
深度解析机器视觉四大光学成像方法
双双棱镜同轴结构光三维测量系统(Applied Optics 2022)
Title: Dual-biprism-based coaxial fringe projection system
3D视觉工坊
2022/06/28
7860
双双棱镜同轴结构光三维测量系统(Applied Optics 2022)
高分辨率、实时的手持物体360°三维模型重建结构光技术
真实物体完整形状的数字化在智能制造、工业检测和反向建模等领域具有重要的应用价值。为了构建刚性对象的完整几何模型,对象必须相对于测量系统(或扫描仪必须相对于对象移动),以获取和集成对象的视图,这不仅使系统配置复杂,而且使整个过程耗时。在这封信中,我们提出了一种高分辨率的实时360°三维(3D)模型重建方法,该方法允许人们手动旋转一个物体,并在扫描过程中看到一个不断更新的三维模型。多视图条纹投影轮廓测量系统从不同的角度获取一个手持物体的高精度深度信息,同时将多个视图实时对齐并合并在一起。我们的系统采用了立体相位展开和自适应深度约束,可以在不增加捕获图案的数量的情况下,稳健地展开密集条纹图像的相位。然后,我们开发了一种有效的从粗到细的配准策略来快速匹配三维表面段。实验结果表明,该方法可以在任意旋转条件下重建复杂物体的高精度完整三维模型,而无需任何仪器辅助和昂贵的预/后处理。
3D视觉工坊
2022/03/11
1.2K0
高分辨率、实时的手持物体360°三维模型重建结构光技术
三维重建方法
最近在看三维重建方面的论文,进行一下知识总结。 三维重建技术 三维重建技术就是要在计算机中真实地重建出该物体表面的三维虚拟模型,构建一个物体完整的三维模型,大致可以分为三步: 利用摄像机等图像采集设备对物体的点云数据从各个角度釆集,单个摄像机只能对物体的一个角度进行拍摄,要获得物体表面完整信息,需要从多个角度对物体拍摄; 将第一步获得的各视角点云数据变换到同一个坐标系下,完成多视角点云数据的配准; 根据配准好的点云数据构建出模型的网格表面。 三维重建方法 目前根据重建方式的不同,主要有以下几种重建方法: 双
武培轩
2018/04/18
1.5K0
三维重建方法
3D测量| 主动模式投影提高AOI三维测量精度
非接触式3D测量可以通过各种技术实现,最常用的方法包括:(1)激光轮廓测量法:用高功率激光器和线阵或面阵传感器实现;(2)立体相机法:用两个面阵传感器和主动模式投影(使用一个面阵相机和一个主动模式投影仪)实现(见图1)。
3D视觉工坊
2023/04/29
6790
3D测量| 主动模式投影提高AOI三维测量精度
结构光自标定方法综述
三维重构是计算机视觉核心问题之一,相机-投影仪结构光系统是三维重构体系中一个重要分支,结构光系统标定是其众多应用的基础,在某些场景下是其不可或缺的部分。根据标定物不同,标定方法可以粗略地分为基于标定物的传统标定方法和基于场景约束的自标定方法,传统标定方法繁杂且无法在线标定,但精度高;自标定方法操作简单,可以满足一些特殊应用场景,但模型复杂且精度、鲁棒性较差。自标定方法是对传统标定方法的补充,结构光系统的自标定是在相机自标定基础上延伸而来,其目的是为了补充传统标定方法存在的缺陷,也是为了简化操作流程。
一点人工一点智能
2023/02/27
9790
结构光自标定方法综述
结构光相移法-多频外差原理+实践(上)
结构光法原理其实是跟双目视觉一样的,都是要确定对应“匹配点”,利用“视差”三角关系计算距离,所不同的是:
计算机视觉
2020/12/29
1.9K0
系列篇|结构光三维重建基本原理
结构光三维重建系统是由一个相机和一个投影仪组成,关于结构光三维重建系统的理论有很多,其中有一个简单的模型是把投影仪看做相机来使用,从而得到物体的三维信息。接下来我将详细介绍这个模型的原理。
计算机视觉
2020/12/11
1.9K0
系列篇|结构光三维重建基本原理
经典工作回顾:重建速率达到228.3fps的高速结构光
传统基于相移法的结构光技术,在计算包裹相位、调制度时,需要利用到反正切函数,利用三角法进行点云重建时,需要对投影矩阵求逆,这些操作都异常地耗费计算量。这在现代CPU中显然不是问题,但是对于嵌入式设备中,显然无法满足实时计算要求。这份发表在光学顶刊《Optcial Express》2010上工作利用LUT无损查找表技术对结构光重建过程进行计算,仅使用运行3.0 GHz的英特尔酷睿2双核Q9650处理器,对于一个640×的480的视频流,可以以每秒1063.8帧的速度生成相位数据,并以每秒228.3帧的速度生成完整的三维坐标点云。
3D视觉工坊
2023/04/29
1.2K0
经典工作回顾:重建速率达到228.3fps的高速结构光
【三维重建】三维数据的显式表示形式
传统的基于图像的三维重建指的是从单幅图像加上额外的场景约束、或者从两幅或以上图像恢复空间点三维坐标的过程,(广义上讲,三维重建就是从现实物体或者场景得到其三维表示的过程)。传统的三维重建分为由运动到结构、多视图立体重建、表面重建、纹理重建等步骤,依托斯坦福大学开发的开源的计算机视觉软件COLMAP可完成该过程(后续文章将深入探索)。
Qomolangma
2024/07/26
4740
【三维重建】三维数据的显式表示形式
使用OpenCV中的Structured-Light(结构光)模块做三维重建(流程 + 代码)
本文主要介绍如何使用OpenCV中的结构光(Structured-Light)模块完成三维重建。(公众号:OpenCV与AI深度学习)
Color Space
2022/09/26
6.6K0
机器视觉中的3D成像技术
近年来,机器视觉技术变得越来越复杂,工业领域的图像处理更多的专注于3D传感器,而且越来越多的技术已经完善并且投入到实际应用中,包括焊缝的检测,以及在生产过程中对未分类部件进行仓拣或精确测量金属板。可以说,机器视觉已经转向了3D。
小白学视觉
2020/06/05
9120
推荐阅读
相关推荐
3D成像方法 汇总(原理解析)— 双目视觉、激光三角、结构光、ToF、光场、全息
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档