前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >15个目标检测开源数据集汇总

15个目标检测开源数据集汇总

作者头像
3D视觉工坊
发布于 2022-03-11 05:17:00
发布于 2022-03-11 05:17:00
6K0
举报

编辑丨极市平台

导读

目标检测应当在这几年当中研究数量以及应用范围最广的一个领域,也持续的受到很多深度学习者们的关注。本文收集和整理了15个目标检测相关的开源数据集,希望能给大家的学习带来帮助。

1.火焰和烟雾图像数据集

数据集链接:http://m6z.cn/6fzn0f

该数据集由早期火灾和烟雾的图像数据集组成。数据集由在真实场景中使用手机拍摄的早期火灾和烟雾图像组成。大约有7000张图像数据。图像是在各种照明条件(室内和室外场景)、天气等条件下拍摄的。该数据集非常适合早期火灾和烟雾探测。数据集可用于火灾和烟雾识别、检测、早期火灾和烟雾、异常检测等。数据集还包括典型的家庭场景,如垃圾焚烧、纸塑焚烧、田间作物焚烧、家庭烹饪等。

2.DOTA航拍图像数据集

DOTA是用于航空图像中目标检测的大型数据集。它可以用于开发和评估航空图像中的目标探测器。这些图像是从不同的传感器和平台收集的。每个图像的大小在800×800到20000×20000像素之间,包含显示各种比例、方向和形状的对象。DOTA图像中的实例由航空图像解释专家通过任意(8 d.o.f.)四边形进行注释。

3. AITEX数据集

数据集链接:http://m6z.cn/5DdJL1

数据库由七个不同织物结构的245张4096 x 256像素图像组成。数据库中有140个无缺陷图像,每种类型的织物20个,除此之外,有105幅纺织行业中常见的不同类型的织物缺陷(12种缺陷)图像。图像的大尺寸允许用户使用不同的窗口尺寸,从而增加了样本数量。

4. T-LESS数据集

数据集链接:http://m6z.cn/5wnucm

该数据集采集的目标为工业应用、纹理很少的目标,同时缺乏区别性的颜色,且目标具有对称性和互相关性,数据集由三个同步的传感器获得,一个结构光传感器,一个RGBD sensor,一个高分辨率RGBsensor,从每个传感器分别获得了3.9w训练集和1w测试集,此外为每个目标创建了2个3D model,一个是CAD手工制作的另一个是半自动重建的。训练集图片的背景大多是黑色的,而测试集的图片背景很多变,会包含不同光照、遮挡等等变换(之所以这么做作者说是为了使任务更具有挑战性)。

同时作者解释了本数据集的优势在于:1.大量跟工业相关的目标;2.训练集都是在可控的环境下抓取的;3.测试集有大量变换的视角;4.图片是由同步和校准的sensor抓取的;5.准确的6D pose标签;6.每个目标有两种3D模型;

5.H²O 行人交互检测数据集

数据集链接:http://m6z.cn/6fzmQf

H²O由V-COCO数据集中的10301张图像组成,其中添加了3635张图像,这些图像主要包含人与人之间的互动。所有的H²O图像都用一种新的动词分类法进行了注释,包括人与物和人与人之间的互动。该分类法由51个动词组成,分为5类:

  • 描述主语一般姿势的动词
  • 与主语移动方式有关的动词
  • 与宾语互动的动词
  • 描述人与人之间互动的动词
  • 涉及力量或暴力的互动动词

6.SpotGarbage垃圾识别数据集

数据集链接:http://m6z.cn/5ZMmRG

图像中的垃圾(GINI)数据集是SpotGarbage引入的一个数据集,包含2561张图像,956张图像包含垃圾,其余的是在各种视觉属性方面与垃圾非常相似的非垃圾图像。

7.NAO自然界对抗样本数据集

数据集链接:http://m6z.cn/5KJWJA

NAO包含7934张图像和9943个对象,这些图像未经修改,代表了真实世界的场景,但会导致最先进的检测模型以高置信度错误分类。与标准MSCOCO验证集相比,在NAO上评估时,EfficientDet-D7的平均精度(mAP)下降了74.5%。

8.Labelme 图像数据集

数据集链接:http://m6z.cn/5Sg9NX

Labelme Dataset 是用于目标识别的图像数据集,涵盖 1000 多个完全注释和 2000 个部分注释的图像,其中部分注释图像可以被用于训练标记算法 ,测试集拥有来自于世界不同地方拍摄的图像,这可以保证图片在续联和测试之间会有较大的差异。该数据集由麻省理工学院 –计算机科学和人工智能实验室于 2007 年发布,相关论文有《LabelMe: a database and web-based tool for image annotation》。

9.印度车辆数据集

数据集链接:http://m6z.cn/6uxAIx

该数据集包括小众印度车辆的图像,如Autorikshaw、Tempo、卡车等。该数据集由用于分类和目标检测的小众印度车辆图像组成。据观察,这些小众车辆(如autorickshaw、tempo、trucks等)上几乎没有可用的数据集。这些图像是在白天、晚上和晚上的不同天气条件下拍摄的。该数据集具有各种各样的照明、距离、视点等变化。该数据集代表了一组非常具有挑战性的利基类车辆图像。该数据集可用于驾驶员辅助系统、自动驾驶等的图像识别和目标检测。

10.Seeing 3D chairs椅子检测模型

数据集链接:http://m6z.cn/5DdK0v

椅子数据集包含大约1000个不同三维椅子模型的渲染图像。

11.SUN09场景理解数据集

数据集链接:http://m6z.cn/60wX8r

SUN09数据集包含12000个带注释的图像,其中包含200多个对象类别。它由自然、室内和室外图像组成。每个图像平均包含7个不同的注释对象,每个对象的平均占用率为图像大小的5%。对象类别的频率遵循幂律分布。发布者使用 397 个采样良好的类别进行场景识别,并以此搭配最先进的算法建立新的性能界限。

该数据集由普林斯顿视觉与机器人实验室于 2014 年发布,相关论文有《SUN Database: Large-scale Scene Recognition from Abbey to Zoo》、《SUN Database: Exploring a Large Collection of Scene Categories》。

12.Unsplash图片检索数据集

数据集链接:http://m6z.cn/5wnuoM

使用迄今为止公开共享的全球最大的开放检索信息数据集。Unsplash数据集由250000多名贡献摄影师创建,并包含了数十亿次照片搜索的信息和对应的照片信息。由于Unsplash数据集中包含广泛的意图和语义,它为研究和学习提供了新的机会。

13.HICO-DET人物交互检测数据集

数据集链接:http://m6z.cn/5DdK6D

HICO-DET是一个用于检测图像中人-物交互(HOI)的数据集。它包含47776幅图像(列车组38118幅,测试组9658幅),600个HOI类别,由80个宾语类别和117个动词类别构成。HICO-DET提供了超过150k个带注释的人类对象对。V-COCO提供了10346张图像(2533张用于培训,2867张用于验证,4946张用于测试)和16199人的实例。

14.上海科技大学人群统计数据集

数据集链接:http://m6z.cn/5Sgafn

上海科技数据集是一个大规模的人群统计数据集。它由1198张带注释的群组图像组成。数据集分为两部分,A部分包含482张图像,B部分包含716张图像。A部分分为训练和测试子集,分别由300和182张图像组成。B部分分为400和316张图像组成的序列和测试子集。群组图像中的每个人都有一个靠近头部中心的点进行注释。总的来说,该数据集由33065名带注释的人组成。A部分的图像是从互联网上收集的,而B部分的图像是在上海繁忙的街道上收集的。

15.生活垃圾数据集

数据集链接:http://m6z.cn/6n5Adu

大约9000多张独特的图片。该数据集由印度国内常见垃圾对象的图像组成。图像是在各种照明条件、天气、室内和室外条件下拍摄的。该数据集可用于制作垃圾/垃圾检测模型、环保替代建议、碳足迹生成等。

本文仅做学术分享,如有侵权,请联系删文。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-02-21,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 3D视觉工坊 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
90+深度学习开源数据集整理|包括目标检测、工业缺陷、图像分割等多个方向
AI-TOD 在 28,036 张航拍图像中包含 8 个类别的 700,621 个对象实例。与现有航拍图像中的目标检测数据集相比,AI-TOD 中目标的平均大小约为 12.8 像素,远小于其他数据集。
计算机视觉
2022/04/07
2.7K0
90+深度学习开源数据集整理|包括目标检测、工业缺陷、图像分割等多个方向
100+深度学习各方向数据集资源大盘点
该CEED2016是新开发的图像数据库,专门用于对比度增强评估。该数据库包含 30 张原始彩色图像和 180 张使用六种不同 CE 方法获得的增强图像。
Ai学习的老章
2024/11/04
5320
100+深度学习各方向数据集资源大盘点
【深度学习】小目标检测、图像分类、图像识别等开源数据集汇总
本文收集整理了多个小目标检测、图像识别、图像分类等方向的开源数据集,本次还有猫咪、斯坦福狗狗数据集以及3D MNIST数字识别等~
黄博的机器学习圈子
2022/04/08
2K0
【深度学习】小目标检测、图像分类、图像识别等开源数据集汇总
开源真实场景图像检测数据集汇总
当前大多数高级人脸识别方法都是基于深度学习而设计的,深度学习取决于大量人脸样本。但是,目前尚没有公开可用的口罩遮挡人脸识别数据集。为此,这项工作提出了三种类型的口罩遮挡人脸数据集,包括口罩遮挡人脸检测数据集(MFDD),真实口罩遮挡人脸识别数据集(RMFRD)和模拟口罩遮挡人脸识别数据集(SMFRD)。基于这些数据集,可以开发口罩遮挡人脸的各种应用。本项目开发的多粒度口罩遮挡人脸识别模型可达到95%的准确性,超过了行业报告的结果。
计算机视觉
2022/04/07
1.1K0
开源真实场景图像检测数据集汇总
常用的20个计算机视觉开源数据集总结
计算机视觉是人工智能的一个领域,它训练计算机解释和理解视觉世界。利用来自相机和视频的字图像以及深度学习模型,机器可以准确地识别和分类物体,然后对它们“看到的”做出反应。
deephub
2022/11/11
1.8K0
常用的20个计算机视觉开源数据集总结
16个车辆信息检测数据集收集汇总
UA-DETRAC是一个具有挑战性的现实世界多目标检测和多目标跟踪基准。数据集由 Cannon EOS 550D摄像头在中国北京和天津24个不同地点拍摄的10个小时的视频组成。视频以每秒25帧的速度录制,分辨率为960540像素。在UA-DETRAC数据集中,有超过14万帧和8250辆车被人工标注,总共标记了121万物体的边界盒。我们还对目标检测和多目标跟踪方面的最新方法进行基准测试,以及本网站中详细介绍的评估指标。
用户9925864
2022/07/27
10.3K0
16个车辆信息检测数据集收集汇总
人脸识别常用开源数据集大全
本文总结整理了10个开源的人脸识别数据集,并附有相关下载链接,希望能给大家带来一些帮助。
3D视觉工坊
2022/03/11
4.8K0
人脸识别常用开源数据集大全
医学图像开源数据集汇总
3D-IRCADb-01 数据库由 10 名女性和 10 名男性 75% 的肝肿瘤患者的 3D CT 扫描组成。20个文件夹对应20个不同的患者,可以单独下载也可以联合下载。下表提供了图像信息,例如肝脏大小(宽度、深度、高度)或根据 Couninaud 分割的肿瘤位置。它还表明肝脏分割软件可能遇到的主要困难是由于与邻近器官的接触、肝脏的非典型形状或密度,甚至图像中的伪影。
3D视觉工坊
2022/06/28
1.6K0
医学图像开源数据集汇总
道路裂缝坑洼图像开源数据集汇总
CrackForest数据集是一个带注释的道路裂缝图像数据库,可以大致反映城市路面状况。
Color Space
2022/12/22
2.5K0
道路裂缝坑洼图像开源数据集汇总
汇总|缺陷检测数据集
https://hci.iwr.uni-heidelberg.de/node/3616
3D视觉工坊
2020/12/11
5.5K0
汇总|缺陷检测数据集
深度学习500问——Chapter08:目标检测(10)
VOC数据集是目标检测经常用的一个数据集,自2005年起每年举办一次比赛,最开始只有4类,到2007年扩充为20个类,共有两个常用的版本:2007和2012。学术界常用的5k的train/val 2007和 16k 的train/val 2012作为训练集,test 2007 作为测试集,用10k 的train/val 2007+test 2007和 16k的train/val 2012作为训练集,test2012作为测试集,分别汇报结果。
JOYCE_Leo16
2024/05/24
1430
深度学习500问——Chapter08:目标检测(10)
YOLO-S:小目标检测的轻量级、精确的类YOLO网络
研究者提出了YOLO-S,一个简单、快速、高效的网络。它利用了一个小的特征提取器,以及通过旁路和级联的跳过连接,以及一个重塑直通层来促进跨网络的特征重用,并将低级位置信息与更有意义的高级信息相结合。
计算机视觉研究院
2023/08/23
1.8K0
YOLO-S:小目标检测的轻量级、精确的类YOLO网络
自然图像目标检测数据集汇总
所有的标注图片都有Detection需要的label, 但只有部分数据有Segmentation Label。 VOC2007中包含9963张标注过的图片, 由train/val/test三部分组成, 共标注出24,640个物体。 VOC2007的test数据label已经公布, 之后的没有公布(只有图片,没有label)。 对于检测任务,VOC2012的trainval/test包含08-11年的所有对应图片。 trainval有11540张图片共27450个物体。 对于分割任务, VOC2012的trainval包含07-11年的所有对应图片, test只包含08-11。trainval有 2913张图片共6929个物体。
狼啸风云
2019/08/14
2.5K0
YOLO-S:一种用于小目标检测的轻量级、精确的类YOLO网络
研究者提出了YOLO-S,一个简单、快速、高效的网络。它利用了一个小的特征提取器,以及通过旁路和级联的跳过连接,以及一个重塑直通层来促进跨网络的特征重用,并将低级位置信息与更有意义的高级信息相结合。
计算机视觉研究院
2023/08/24
7360
YOLO-S:一种用于小目标检测的轻量级、精确的类YOLO网络
目标检测算法之评价标准和常见数据集盘点
前面只顾着讲算法,讲损失,讲训练参数设置和细节,缺忽视了一个重要的东西,那就是目标检测的评价标准是什么?这一节,我们就来搞懂这个问题。
BBuf
2019/12/09
9080
史上最全 | 室外大规模3D检测数据集汇总
作者:Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago;
3D视觉工坊
2023/04/29
1.5K0
史上最全 | 室外大规模3D检测数据集汇总
CVPR 2022数据集汇总|包含目标检测、多模态等方向
数据集地址:https://xiaodongsuper.github.io/M5Product_dataset/index.html
计算机视觉
2022/05/24
1.1K0
CVPR 2022数据集汇总|包含目标检测、多模态等方向
目标检测资源总结
blog.csdn.net/l7H9JA4/article/details/79620247
用户3578099
2019/08/15
9030
数据收集渠道_数据挖掘数据集
NLP方向:Hugging Face – The AI community building the future.
全栈程序员站长
2022/11/03
1.2K0
数据收集渠道_数据挖掘数据集
YOLO目标检测,训练自己的数据集(识别海参)
这篇文章是训练YOLO v2过程中的经验总结,我使用YOLO v2训练一组自己的数据,训练后的model,在阈值为.25的情况下,Recall值是95.54%,Precision 是97.27%。
机器学习AI算法工程
2019/10/28
2.5K0
YOLO目标检测,训练自己的数据集(识别海参)
推荐阅读
相关推荐
90+深度学习开源数据集整理|包括目标检测、工业缺陷、图像分割等多个方向
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档