前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Apollo自动驾驶之地图生产技术

Apollo自动驾驶之地图生产技术

作者头像
李小白是一只喵
发布2022-03-21 15:34:55
5540
发布2022-03-21 15:34:55
举报
文章被收录于专栏:算法微时光

image.png

地图制作

在城市道路环境下,高精地图生产分为数据采集、数据处理、元素识别、人工验证四个环节。

数据采集

百度采取的是激光雷达和Camera二者相结合的制图方案。

Apollo2.5版本中,百度已经发布了其地图采集方案。

该方案的基础传感器配置有:平装的64线激光雷达和16线激光雷达。

其中,64线激光雷达用于道路路面采集。由于其扫描高度比较低,还需要一个斜向上装的16线激光雷达,用于检测较高处的红绿灯、标牌等信息。

其他传感器有GPS、IMU、长焦相机以及短焦相机。

image.png

数据处理

传感器采集到的数据分为点云和图像两大类。

L4级自动驾驶汽车对地图的精度要求非常高。Apollo在制图过程中处理的数据也以点云为主。

采用RTK的先决条件,即在开阔无遮挡的情况下,才能取得相对准确的信号。

在城市道路中采用RTK方案,由于高楼遮挡或林荫路等场景无法避免,它们仍会对信号的稳定性产生影响。

因此,我们在拿到点云之后需要对其进行拼接处理。

点云拼接:采集过程中出现信号不稳定时,需借助SLAM或其他方案,对Pose进行优化,才能将点云信息拼接,并形成一个完整的点云信息。

反射地图:点云拼接后,可将其压缩成可做标注、高度精确的反射地图,甚至基于反射地图来绘制高清地图。其生产过程与定位地图的制图方式一样。

image.png

元素识别

元素识别包括基于深度学习的元素识别和基于深度学习的点云分类。

基于点云压缩成的图像进行车道线的识别,我们可得出准确的车道线级别的道路形状特征。

除此之外,我们还需要提炼道路的虚实线、黄白线、路牌标识等,来完善道路特征。

通过对收集到的图像等进行深度学习,即可提炼出道路相关元素放到高精地图中。

数据采集、数据处理、元素识别三个流程是高精地图自动化的必要环节。

不过,从目前来看,自动化仍无法解决所有问题,仍存在信息补齐和逻辑关联的缺陷。

一方面,无人驾驶车辆无法处理没有车道线的道路。这一步需要离线并用人工手段补齐相关信息。

其次,涉及到逻辑信息的处理时,无人车无法判断。例如在某一路口遭遇红绿灯时,车端应该识别哪个交通信号灯,也需要人工手段关联停止线与红绿灯。

人工验证

人工验证的环节包括识别车道线是否正确、对信号灯、标志牌进行逻辑处理、路口虚拟道路逻辑线的生成等。

全自动数据融合加工

百度高精地图依托模式识别、深度学习、三维重建、点云信息处理等世界领先的技术,其数据自动化处理程度已达到90%,相对精度达0.1-0.2米,准确率高达95%以上。

简单的说,采集到的这些每秒 10 帧左右的图像,识别和融合都是自动化的。

把 GPS、点云、图像等数据叠加到一起后,将进行道路标线、路沿、路牌、交通标志等等道路元素的识别。

另外,诸如同一条道路上下行双向采集之后造成的数据重复问题,也会在这一步里被自动整合,剔除重复内容。

目前百度对于城市复杂场景及环境的制图效果较好,可以精细刻画上百种道路要素和属性。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022.03.02 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 地图制作
    • 数据采集
      • 数据处理
        • 元素识别
          • 人工验证
            • 全自动数据融合加工
            领券
            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档