A Dual-Population-Based Evolutionary Algorithm for Constrained Multiobjective Optimization
最近我在学习约束多目标问题的论文,其中由明博士和张教授发表在TEVC上的c-DPEA非常不错~
此篇文章为 M. Ming, A. Trivedi, R. Wang, D. Srinivasan and T. Zhang, "A Dual-Population-Based Evolutionary Algorithm for Constrained Multiobjective Optimization," in IEEE Transactions on Evolutionary Computation, vol. 25, no. 4, pp. 739-753, Aug. 2021, doi: 10.1109/TEVC.2021.3066301. 的论文学习笔记,只供学习使用,不作商业用途,侵权删除。并且本人学术功底有限如果有思路不正确的地方欢迎批评指正!
备注: 由于提出的 saPF,Population1 可以保留和利用有希望的不可行解,即具有良好目标向量和低约束违规的解。相反,Population2 是以可行性为导向的。它忽略了不可行解中可能固有的有用信息。然而,它保持了迄今为止发现的具有良好目标向量的可行解。因此,双重种群在处理不可行的解时本质上是互补的。这种互补性是 c-DPEA 的主要优势之一。这些特征将在后面的第 V -A 节中说明。
无约束的 PF 是完全不可行的,所有的帕累托最优解都位于可行区域的边界上。CTP2–CTP6、CTP8、MW9、MW11、MW12、C3-DTLZ1 和 C3-DTLZ4 是 IV 型问题。
4.2. Algorithms for Comparison and Parameter Setting
For performance comparison, six state-of-the-art CMOEAs, namely, C-NSGA-II [6], ToR-NSGA-II [20], C-MOEA/DD [27], PPS-MOEA/D [21], C-TAEA [10], and CCMO [11] are considered. The characteristics of these algorithms are discussed in Section II. The parameter settings are described in Section S-III in the supplementary material. It is worth noting that all the experiments in this article are conducted on the PlatEMO platform proposed in [34].
5. EXPERIMENTAL RESULTS AND DISCUSSION
在本节中,在将提议的 c-DPEA 与最先进的 CMOEA 进行比较之前,将对 c-DPEA 的设计组件进行彻底研究。首先,在第 V -A 节中检查了 c-DPEA 中双重群体的行为。随后,在第 V -B 节中分析了 c-DPEA 中协作协同进化方法的有效性。此后,saPF 与其他自适应惩罚函数相比的性能在第 V-C 节中进行了探讨,并且在第 V-D 节中研究了所提出的 bCAD 适应度函数的功效。最后,在第 V-E 节中,将 c-DPEA 与六种最先进的对等算法进行了比较。
5.1 Investigation Into Behavior of Dual Populations in c-DPEA
[1] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. Chichester, U.K.: Wiley, 2001.
[2] J. Wang, W. Ren, Z. Zhang, H. Huang, and Y . Zhou, “A hybrid multiobjective memetic algorithm for multiobjective periodic vehicle routing problem with time windows,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 50, no. 11, pp. 4732–4745, Nov. 2020.
[3] R. Tanabe and A. Oyama, “A note on constrained multi-objective optimization benchmark problems,” in Proc. IEEE Congr . Evol. Comput. (CEC), 2017, pp. 1127–1134.
[4] C. A. Coello Coello, “Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art,” Comput. Methods Appl. Mech. Eng., vol. 191, nos. 11–12, pp. 1245–1287, 2002.
[5] Z. Ma and Y . Wang, “Evolutionary constrained multiobjective optimization: Test suite construction and performance comparisons,” IEEE Trans. Evol. Comput., vol. 23, no. 6, pp. 972–986, Dec. 2019.
[6] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, Apr. 2002.
[7] M. A. Jan and R. A. Khanum, “A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D,” Appl. Soft Comput., vol. 13, no. 1, pp. 128–148, 2013.
[8] T. Ray, H. K. Singh, A. Isaacs, and W. Smith,“Infeasibility driven evolutionary algorithm for constrained optimization,” in Constraint-Handling in Evolutionary Optimization. Heidelberg, Germany: Springer, 2009, pp. 145–165.
[9] J. Wang, G. Liang, and J. Zhang, “Cooperative differential evolution framework for constrained multiobjective optimization,” IEEE Trans. Cybern., vol. 49, no. 6, pp. 2060–2072, Jun. 2019.
[10] K. Li, R. Chen, G. Fu, and X. Y ao, “Two-archive evolutionary algorithm for constrained multiobjective optimization,” IEEE Trans. Evol. Comput., vol. 23, no. 2, pp. 303–315, Apr. 2019.
[11] Y . Tian, T. Zhang, J. Xiao, X. Zhang, and Y . Jin, “A coevolutionary framework for constrained multi-objective optimization problems,” IEEE Trans. Evol. Comput., vol. 25, no. 1, pp. 102–116, Feb. 2021.
[12] H.-L. Liu, L. Chen, K. Deb, and E. D. Goodman, “Investigating the effect of imbalance between convergence and diversity in evolutionary multiobjective algorithms,” IEEE Trans. Evol. Comput., vol. 21, no. 3, pp. 408–425, Jun. 2017.
[13] C. M. Fonseca and P . J. Fleming, “Multiobjective optimization and multiple constraint handling with evolutionary algorithms–Part I: A unified formulation,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 28, no. 1, pp. 26–37, Jan. 1998.
[14] Y . G. Woldesenbet, G. G. Y en, and B. G. Tessema, “Constraint handling in multiobjective evolutionary optimization,” IEEE Trans. Evol. Comput., vol. 13, no. 3, pp. 514–525, Jun. 2009.
[15] T. Takahama and S. Sakai, “Efficient constrained optimization by the ε constrained adaptive differential evolution,” in Proc. IEEE Congr . Evol. Comput. (CEC), 2010, pp. 1–8.
[16] Y . Wang and Z. Cai, “Combining multiobjective optimization with differential evolution to solve constrained optimization problems,” IEEE Trans. Evol. Comput., vol. 16, no. 1, pp. 117–134, Feb. 2012.
[17] M. F. Tasgetiren, P . N. Suganthan, Q.-K. Pan, R. Mallipeddi, and S. Sarman, “An ensemble of differential evolution algorithms for constrained function optimization,” in Proc. IEEE Congr . Evol. Comput. (CEC), 2010, pp. 1–8.
[18] E. Mezura-Montes and C. A. Coello Coello, “Constraint-handling in nature-inspired numerical optimization: past, present and future,” Swarm Evol. Comput., vol. 1, no. 4, pp. 173–194, 2011.
[19] W. Ning, B. Guo, Y . Y an, X. Wu, J. Wu, and D. Zhao, “Constrained multi-objective optimization using constrained non-dominated sorting combined with an improved hybrid multi-objective evolutionary algorithm,” Eng. Optim., vol. 49, no. 10, pp. 1645–1664, 2017.
[20] Z. Ma, Y . Wang, and W. Song, “A new fitness function with two rankings for evolutionary constrained multiobjective optimization,” IEEE Trans. Syst., Man, Cybern., Syst., early access, Oct. 28, 2020, doi: 10.1109/TSMC.2019.2943973.
[21] Z. Fan et al., “Push and pull search for solving constrained multiobjective optimization problems,” Swarm Evol. Comput., vol. 44, pp. 665–679, Feb. 2019.
[22] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm based on decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6, pp. 712–731, Dec. 2007.
[23] Z. Liu and Y . Wang, “Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces,” IEEE Trans. Evol. Comput., vol. 23, no. 5, pp. 870–884, Oct. 2019.
[24] X. Li and X. Y ao, “Cooperatively coevolving particle swarms for large scale optimization,” IEEE Trans. Evol. Comput., vol. 16, no. 2, pp. 210–224, Apr. 2012.
[25] L. M. Antonio and C. A. Coello Coello, “Coevolutionary multiobjective evolutionary algorithms: Survey of the state-of-the-art,” IEEE Trans. Evol. Comput., vol. 22, no. 6, pp. 851–865, Dec. 2018.
[26] H.-L. Liu, F. Gu, and Q. Zhang, “Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems,” IEEE Trans. Evol. Comput., vol. 18, no. 3, pp. 450–455, Jun. 2014.
[27] K. Li, K. Deb, Q. Zhang, and S. Kwong, “An evolutionary manyobjective optimization algorithm based on dominance and decomposition,” IEEE Trans. Evol. Comput., vol. 19, no. 5, pp. 694–716, Oct. 2015.
[28] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength Pareto evolutionary algorithm,” in Proc. Evol. Methods Design Optim. Control Appl. Ind. Problems, 2001, pp. 95–100.
[29] S. Kukkonen and K. Deb, “A fast and effective method for pruning of non-dominated solutions in many-objective problems,” in Proc. Int. Conf. Parall. Problem Solving Nat. (PPSN), 2006, pp. 553–562.
[30] K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous search space,” Complex Syst., vol. 9, no. 2, pp. 115–148, 1995.
[31] K. Deb and M. Goyal, “A combined genetic adaptive search (GeneAS) for engineering design,” Comput. Sci. Inform., vol. 26, no. 4, pp. 30–45, 1996.
[32] K. Deb, A. Pratap, and T. Meyarivan, “Constrained test problems for multi-objective evolutionary optimization,” in Proc. Int. Conf. Evol. Multi Criterion Optim. (EMO), 2001, pp. 284–298.
[33] H. Jain and K. Deb, “An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach,” IEEE Trans. Evol. Comput., vol. 18, no. 4, pp. 602–622, Aug. 2014.
[34] Y . Tian, R. Cheng, X. Zhang, and Y . Jin, “PlatEMO: A MA TLAB platform for evolutionary multi-objective optimization,” IEEE Comput. Intell. Mag., vol. 12, no. 4, pp. 73–87, Nov. 2017.
[35] P . A. Bosman and D. Thierens, “The balance between proximity and diversity in multiobjective evolutionary algorithms,” IEEE Trans. Evol. Comput., vol. 7, no. 2, pp. 174–188, Apr. 2003.
[36] M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric Statistical Methods, vol. 751. Hoboken, NJ, USA: John Wiley & Sons, 2013. [37] L. Jiao, J. Luo, R. Shang, and F. Liu, “A modified objective function method with feasible-guiding strategy to solve constrained multi-objective optimization problems,” Appl. Soft Comput., vol. 14, pp. 363–380, Jan. 2014.
[38] D. A. V an V eldhuizen and G. B. Lamont, “On measuring multiobjective evolutionary algorithm performance,” in Proc. IEEE Congr . Evol. Comput. (CEC), vol. 1, 2000, pp. 204–211.
[39] K. Deb and S. Jain, “Running performance metrics for evolutionary multi-objective optimization,” Indian Inst. Technol. Kanpur, Kanpur, India, Rep. 2002004, 2002