A Novel Dual-Stage Dual-Population Evolutionary Algorithm for Constrained Multi-Objective Optimization
最近我在学习约束多目标问题的论文,其中由明博士和张教授发表在TEVC上的DD-CMOEA非常不错~
原文链接 ---也埋在阅读原文中
此篇文章为 M. Ming, R. Wang, H. Ishibuchi and T. Zhang, "A Novel Dual-Stage Dual-Population Evolutionary Algorithm for Constrained Multi-Objective Optimization," in IEEE Transactions on Evolutionary Computation, doi: 10.1109/TEVC.2021.3131124. 的论文学习笔记,只供学习使用,不作商业用途,侵权删除。并且本人学术功底有限如果有思路不正确的地方欢迎批评指正!
[1] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, 2002.
[2] H. Jain and K. Deb, “An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach,” IEEE Trans. Evol. Comput., vol. 18, no. 4, pp. 602–622, 2013.
[3] Z. Ma, Y . Wang, and W. Song, “A new fitness function with two rankings for evolutionary constrained multiobjective optimization,” IEEE Trans. Syst., Man, Cybern., Syst., 2019.
[4] Z. Fan, W. Li, X. Cai, H. Li, C. Wei, Q. Zhang, K. Deb, and E. Goodman, “Push and pull search for solving constrained multi-objective optimization problems,” Swarm Evol. Comput., vol. 44, pp. 665–679, 2019.
[5] Z. Liu and Y . Wang, “Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces,” IEEE Trans. Evol. Comput., vol. 23, no. 5, pp. 870–884, 2019.
[6] K. Li, K. Deb, Q. Zhang, and S. Kwong, “An evolutionary many-objective optimization algorithm based on dominance and decomposition,” IEEE Trans. Evol. Comput., vol. 19, no. 5, pp. 694–716, 2015.
[7] M. Elarbi, S. Bechikh, and L. B. Said, “On the importance of isolated infeasible solutions in the many-objective constrained NSGA-III,” Knowledge-Based Systems, 2018.
[8] J. Wang, G. Liang, and J. Zhang, “Cooperative differential evolution framework for constrained multiobjective optimization,” IEEE Trans. Cybern., vol. 49, no. 6, pp. 2060–2072, 2018.
[9] K. Li, R. Chen, G. Fu, and X. Yao, “Two-archive evolutionary algorithm for constrained multiobjective optimization,” IEEE Trans. Evol. Comput., vol. 23, no. 2, pp. 303–315, 2018.
[10] Y . Tian, T. Zhang, J. Xiao, X. Zhang, and Y . Jin, “A coevolutionary framework for constrained multi-objective optimization problems,” IEEE Trans. Evol. Comput., 2020.
[11] Z. Fan, Y . Fang, W. Li, J. Lu, X. Cai, and C. Wei, “A comparative study of constrained multi-objective evolutionary algorithms on constrained multiobjective optimization problems,” in Proc. IEEE Congr . Evol. Comput. (CEC), 2017, pp. 209–216.
[12] Z. Fan, W. Li, X. Cai, H. Huang, Y . Fang, Y . Y ou, J. Mo, C. Wei, and E. Goodman, “An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions,” Soft Comput., pp. 1–20, 2017.
[13] H. Li and Q. Zhang, “Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II,” IEEE Trans. Evol. Comput., vol. 13, no. 2, pp. 284–302, 2009.
[14] M. A. Jan and R. A. Khanum, “A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D,” Appl. Soft Comput., vol. 13, no. 1, pp. 128–148, 2013.
[15] A. V argha and H. D. Delaney, “A critique and improvement of the cl common language effect size statistics of mcgraw and wong,” J Educ Behav Stat, vol. 25, no. 2, pp. 101–132, 2000.
[16] M. Ming, R. Wang, Y . Zha, and T. Zhang, “Pareto adaptive penalty-based boundary intersection method for multi-objective optimization,” Inform. Sci., vol. 414, pp. 158–174, 2017.
[17] R. Wang, J. Xiong, M.-f. He, L. Gao, and L. Wang, “Multi-objective optimal design of hybrid renewable energy system under multiple scenarios,” Renew Energ, vol. 151, pp. 226–237, 2020.