A Novel Dual-Stage Dual-Population Evolutionary Algorithm for Constrained Multi-Objective Optimization
最近我在学习约束多目标问题的论文,其中由明博士和张教授发表在TEVC上的DD-CMOEA非常不错~
原文链接 -点击阅读原文即可到达
此篇文章为 M. Ming, R. Wang, H. Ishibuchi and T. Zhang, "A Novel Dual-Stage Dual-Population Evolutionary Algorithm for Constrained Multi-Objective Optimization," in IEEE Transactions on Evolutionary Computation, doi: 10.1109/TEVC.2021.3131124. 的论文学习笔记,只供学习使用,不作商业用途,侵权删除。并且本人学术功底有限如果有思路不正确的地方欢迎批评指正!
3) Decision of Search Stage:在auxPop更新后,auxPop的改进会通过量化的方式进行考量以判断auxPop是否进入一个稳定的状态。如在[9]中所述,种群的改进程度可以通过考量种群中特定点经过一定世代后的改变率来考量。例如理想点和最低点。在这篇文章中,平均点,估计理想点和估计最低点被用作表征目标向量分布的特征点。以下的计算方法是取每个目标上平均点,理想点,最低点的最大值作为ra,rz,rn,然后比较ra,rz,rn,取这三个数中的最大值作为衡量种群的变化率rt,其中t表示迭代的次数。其中l_gap表示世代的gap,用以计算rt.更多的需要参考补充材料中的详细描述。
根据非约束PF和真实PF的不同关系,这些问题可以分为四类 [4] [4] Z. Ma and Y . Wang, “Evolutionary constrained multiobjective optimization: Test suite construction and performance comparisons,” IEEE Trans. Evol. Comput., vol. 23, no. 6, pp. 972–986, 2019.
以下是各种对比算法的参数设置,并且所有算法都在platEMO上实现。
4.2 Investigation into the Search Behavior of DD-CMOEA
4.2.1 Investigation into the Effect of Using Dual Populations
[1] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. Chichester, U.K.: John Wiley & Sons, 2001.
[2] J. Wang, W. Ren, Z. Zhang, H. Huang, and Y . Zhou, “A hybrid multiobjective memetic algorithm for multiobjective periodic vehicle routing problem with time windows,” IEEE Trans. Syst., Man, Cybern., Syst., 2018.
[3] R. Tanabe and A. Oyama, “A note on constrained multi-objective optimization benchmark problems,” in Proc. IEEE Congr . Evol. Comput. (CEC), 2017, pp. 1127–1134.
[4] Z. Ma and Y . Wang, “Evolutionary constrained multiobjective optimization: Test suite construction and performance comparisons,” IEEE Trans. Evol. Comput., vol. 23, no. 6, pp. 972–986, 2019.
[5] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, 2002.
[6] Z. Fan, W. Li, X. Cai, H. Huang, Y . Fang, Y . Y ou, J. Mo, C. Wei, and E. Goodman, “An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions,” Soft Comput., pp. 1–20, 2017.
[7] K. Li, R. Chen, G. Fu, and X. Yao, “Two-archive evolutionary algorithm for constrained multiobjective optimization,” IEEE Trans. Evol. Comput., vol. 23, no. 2, pp. 303–315, 2018.
[8] M. Elarbi, S. Bechikh, and L. B. Said, “On the importance of isolated infeasible solutions in the many-objective constrained NSGA-III,” Knowledge-Based Systems, 2018.
[9] Z. Fan, W. Li, X. Cai, H. Li, C. Wei, Q. Zhang, K. Deb, and E. Goodman, “Push and pull search for solving constrained multiobjective optimization problems,” Swarm Evol. Comput., vol. 44, pp. 665–679, 2019.
[10] Z. Ma, Y . Wang, and W. Song, “A new fitness function with two rankings for evolutionary constrained multiobjective optimization,” IEEE Trans. Syst., Man, Cybern., Syst., 2019.
[11] Y . Tian, T. Zhang, J. Xiao, X. Zhang, and Y . Jin, “A coevolutionary framework for constrained multi-objective optimization problems,” IEEE Trans. Evol. Comput., 2020.
[12] C. M. Fonseca and P . J. Fleming, “Multiobjective optimization and multiple constraint handling with evolutionary algorithms – Part I: A unified formulation,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 28, no. 1, pp. 26–37, 1998.
[13] H. Jain and K. Deb, “An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach,” IEEE Trans. Evol. Comput., vol. 18, no. 4, pp. 602–622, 2013.
[14] Y . G. Woldesenbet, G. G. Yen, and B. G. Tessema, “Constraint handling in multiobjective evolutionary optimization,” IEEE Trans. Evol. Comput., vol. 13, no. 3, pp. 514–525, 2009.
[15] M. A. Jan and R. A. Khanum, “A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D,” Appl. Soft Comput., vol. 13, no. 1, pp. 128–148, 2013.
[16] T. Takahama and S. Sakai, “Efficient constrained optimization by the ε constrained adaptive differential evolution,” in Proc. IEEE Congr . Evol. Comput. (CEC), 2010, pp. 1–8.
[17] Y . Wang and Z. Cai, “Combining multiobjective optimization with differential evolution to solve constrained optimization problems,” IEEE Trans. Evol. Comput., vol. 16, no. 1, pp. 117–134, 2012.
[18] E. Mezura-Montes and C. A. C. Coello, “Constraint-handling in natureinspired numerical optimization: past, present and future,” Swarm Evol. Comput., vol. 1, no. 4, pp. 173–194, 2011.
[19] W. Ning, B. Guo, Y . Yan, X. Wu, J. Wu, and D. Zhao, “Constrained multi-objective optimization using constrained non-dominated sorting combined with an improved hybrid multi-objective evolutionary algorithm,” Eng. Optim., vol. 49, no. 10, pp. 1645–1664, 2017.
[20] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm based on decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6, pp. 712–731, 2007.
[21] Z. Liu and Y . Wang, “Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces,” IEEE Trans. Evol. Comput., vol. 23, no. 5, pp. 870–884, 2019.
[22] K. Li, K. Deb, Q. Zhang, and S. Kwong, “An evolutionary manyobjective optimization algorithm based on dominance and decomposition,” IEEE Trans. Evol. Comput., vol. 19, no. 5, pp. 694–716, 2015.
[23] X. Li and X. Yao, “Cooperatively coevolving particle swarms for large scale optimization,” IEEE Trans. Evol. Comput., vol. 16, no. 2, pp. 210– 224, 2011.
[24] J. Wang, G. Liang, and J. Zhang, “Cooperative differential evolution framework for constrained multiobjective optimization,” IEEE Trans. Cybern., vol. 49, no. 6, pp. 2060–2072, 2018.
[25] J. Wang, W. Zhang, and J. Zhang, “Cooperative differential evolution with multiple populations for multiobjective optimization,” IEEE Trans. Cybern., vol. 46, no. 12, pp. 2848–2861, 2015.
[26] H.-L. Liu, F. Gu, and Q. Zhang, “Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems,” IEEE Trans. Evol. Comput., vol. 18, no. 3, pp. 450–455, 2013.
[27] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength Pareto evolutionary algorithm,” TIK-report, vol. 103, 2001.
[28] K. Deb, R. B. Agrawal et al., “Simulated binary crossover for continuous search space,” Complex Syst., vol. 9, no. 2, pp. 115–148, 1995.
[29] K. Deb and M. Goyal, “A combined genetic adaptive search (GeneAS) for engineering design,” Comput. Sci. Inform., vol. 26, pp. 30–45, 1996.
[30] K. Deb, A. Pratap, and T. Meyarivan, “Constrained test problems for multi-objective evolutionary optimization,” in Proc. Int. Conf. Evol. Multi Criterion Optim. (EMO). Springer, 2001, pp. 284–298.
[31] K. Price, R. M. Storn, and J. A. Lampinen, Differential evolution: A practical approach to global optimization. Springer Science & Business Media, 2006.
[32] Y . Tian, R. Cheng, X. Zhang, and Y . Jin, “PlatEMO: A MA TLAB platform for evolutionary multi-objective optimization,” IEEE Comput. Intell. Mag., vol. 12, no. 4, pp. 73–87, 2017.
[33] P . A. Bosman and D. Thierens, “The balance between proximity and diversity in multiobjective evolutionary algorithms,” IEEE Trans. Evol. Comput., vol. 7, no. 2, pp. 174–188, 2003.
[34] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach,” IEEE Trans. Evol. Comput., vol. 3, no. 4, pp. 257–271, 1999.
[35] M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric statistical methods. John Wiley & Sons, 2013, vol. 751.
[36] R. Azzouz, S. Bechikh, and L. Ben Said, “Multi-objective optimization with dynamic constraints and objectives: New challenges for evolutionary algorithms,” in Proc. Genetic Evol. Comput. Conf. (GECCO), 2015, pp. 615–622.
[37] M. Ming, R. Wang, and T. Zhang, “Evolutionary many-constraint optimization: An exploratory analysis,” in Proc. Int. Conf. Evol. Multi Criterion Optim. (EMO). Springer, 2019, pp. 165–176.
[38] K. H. Rahi, H. K. Singh, and T. Ray, “Partial evaluation strategies for expensive evolutionary constrained optimization,” IEEE Trans. Evol. Comput., 2021.