前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >JAVA面试备战(十)--Semaphore 源码分析

JAVA面试备战(十)--Semaphore 源码分析

作者头像
程序员爱酸奶
发布2022-04-12 17:22:53
3040
发布2022-04-12 17:22:53
举报
文章被收录于专栏:程序员爱酸奶

前言

Semaphore(信号量)也是常用的并发工具之一,它常常用于流量控制。通常情况下,公共的资源常常是有限的,例如数据库的连接数。使用Semaphore可以帮助我们有效的管理这些有限资源的使用。

Semaphore的结构和ReentrantLock以及CountDownLatch很像,内部采用了公平锁与非公平锁两种实现,如果你已经看过了ReentrantLock源码分析 和 CountDownLatch源码分析,弄懂它将毫不费力。

核心属性

与CountDownLatch类似,Semaphore主要是通过AQS的共享锁机制实现的,因此它的核心属性只有一个sync,它继承自AQS:

代码语言:javascript
复制
private final Sync sync;
代码语言:javascript
复制
abstract static class Sync extends AbstractQueuedSynchronizer {
    private static final long serialVersionUID = 1192457210091910933L;

    Sync(int permits) {
        setState(permits);
    }

    final int getPermits() {
        return getState();
    }

    final int nonfairTryAcquireShared(int acquires) {
        //省略
    }

    protected final boolean tryReleaseShared(int releases) {
        //
    }

    final void reducePermits(int reductions) {
        //省略
    }

    final int drainPermits() {
        //省略
    }
}

这里的permits和CountDownLatch的count很像,它们最终都将成为AQS中的state属性的初始值。

构造函数

Semaphore有两个构造函数:

代码语言:javascript
复制
public Semaphore(int permits) {
    sync = new NonfairSync(permits);
}

public Semaphore(int permits, boolean fair) {
    sync = fair ? new FairSync(permits) : new NonfairSync(permits);
}

默认的构造函数使用的是非公平锁,另一个构造函数通过传入的fair参数来决定使用公平锁还是非公平锁,这一点和ReentrantLock用的是同样的套路,都是同样的代码框架。

公平锁和非公平锁的定义如下:

代码语言:javascript
复制
static final class FairSync extends Sync {
    
   FairSync(int permits) {
        super(permits);
    }

    protected int tryAcquireShared(int acquires) {
        for (;;) {
            if (hasQueuedPredecessors())
                return -1;
            int available = getState();
            int remaining = available - acquires;
            if (remaining < 0 ||
                compareAndSetState(available, remaining))
                return remaining;
        }
    }
}

static final class NonfairSync extends Sync {
    
   NonfairSync(int permits) {
        super(permits);
    }

    protected int tryAcquireShared(int acquires) {
        return nonfairTryAcquireShared(acquires);
    }
}

获取信号量

获取信号量的方法有4个:

acquire方法

本质调用

acquire()

sync.acquireSharedInterruptibly(1)

acquire(int permits)

sync.acquireSharedInterruptibly(permits)

acquireUninterruptibly()

sync.acquireShared(1)

acquireUninterruptibly(int permits)

sync.acquireShared(permits);

可见,acquire()方法就相当于acquire(1)acquireUninterruptibly同理,只不过一种响应中断,一种不响应中断,关于AQS的那四个方法我们在前面的文章中都已经分析过了,除了其中的tryAcquireShared(arg)由子类实现外,其他的都由AQS实现。

值得注意的是,在共享锁的获取与释放中我们特别提到过tryAcquireShared返回值的含义:

  • 如果该值小于0,则代表当前线程获取共享锁失败
  • 如果该值大于0,则代表当前线程获取共享锁成功,并且接下来其他线程尝试获取共享锁的行为很可能成功
  • 如果该值等于0,则代表当前线程获取共享锁成功,但是接下来其他线程尝试获取共享锁的行为会失败

这里的返回值其实代表的是剩余的信号量的值,如果为负值则说明信号量不够了。

接下来我们就看看子类对于tryAcquireShared(arg)方法的实现:

非公平锁实现

代码语言:javascript
复制
protected int tryAcquireShared(int acquires) {
    return nonfairTryAcquireShared(acquires);
}
代码语言:javascript
复制
final int nonfairTryAcquireShared(int acquires) {
    for (;;) {
        int available = getState();
        int remaining = available - acquires;
        if (remaining < 0 || 
            compareAndSetState(available, remaining))
            return remaining;
    }
}

与一般的tryAcquire逻辑不同,Semaphore的tryAcquire逻辑是一个自旋操作,因为Semaphore是共享锁,同一时刻可能有多个线程来修改这个值,所以我们必须使用自旋 + CAS来避免线程冲突。

该方法退出的唯一条件是成功的修改了state值,并返回state的剩余值。如果剩下的信号量不够了,则就不需要进行CAS操作,直接返回剩余值。所以其实tryAcquireShared返回的不是当前剩余的信号量的值,而是如果扣去acquires之后,当前将要剩余的信号量的值,如果这个“将要”剩余的值比0小,则是不会发生扣除操作的。这就好比我要买10个包子,包子铺现在只剩3个了,则将会返回剩余3 \- 10 = \-7个包子,但是事实上包子店并没有将包子卖出去,实际剩余的包子还是3个;此时如果有另一个人来只要买1个包子,则将会返回剩余3 \- 1 = 2个包子,并且包子店会将一个包子卖出,实际剩余的包子数也是2个。

非公平锁的这种获取信号量的逻辑其实和CountDownLatch的countDown方法很像:

代码语言:javascript
复制
// CountDownLatch
public void countDown() {
    sync.releaseShared(1);
}

countDown()releaseShared(1)方法中将调用tryReleaseShared

代码语言:javascript
复制
// CountDownLatch
protected boolean tryReleaseShared(int releases) {
    // Decrement count; signal when transition to zero
    for (;;) {
        int c = getState();
        if (c == 0)
            return false;
        int nextc = c-1;
        if (compareAndSetState(c, nextc))
            return nextc == 0;
    }
}

对比CountDownLatch的tryReleaseShared方法和Semaphore的tryAcquireShared方法可知,它们的核心逻辑都是减少state的值,只不过CountDownLatch借用了共享锁的壳,对它而言,减少state的值是一种释放共享锁的行为,因为它的目的是将state值降为0;而在Semaphore中,减少state的值是一种获取共享锁的行为,减少成功了,则获取成功。

公平锁实现

代码语言:javascript
复制
protected int tryAcquireShared(int acquires) {
    for (;;) {
        if (hasQueuedPredecessors())
            return -1;
        int available = getState();
        int remaining = available - acquires;
        if (remaining < 0 ||
            compareAndSetState(available, remaining))
            return remaining;
    }
}

通过对比可以看出,它和nonfairTryAcquireShared的唯一的差别在于:

代码语言:javascript
复制
if (hasQueuedPredecessors())
    return -1;

即在获取共享锁之前,先用hasQueuedPredecessors方法判断有没有人排在自己前面。关于hasQueuedPredecessors方法,我们在前面的文章中已经分析过了,它就是判断当前节点是否有前驱节点,有的话直接返回获取失败,因为要让前驱节点先去获取锁。(毕竟公平锁讲究先来后到嘛)

释放信号量

释放信号量的方法有2个:

代码语言:javascript
复制
public void release() {
    sync.releaseShared(1);
}
代码语言:javascript
复制
public void release(int permits) {
    if (permits < 0) throw new IllegalArgumentException();
    sync.releaseShared(permits);
}

可见,release() 相当于调用了 release(1),它们最终都调用了tryReleaseShared(int releases)方法:

代码语言:javascript
复制
protected final boolean tryReleaseShared(int releases) {
    for (;;) {
        int current = getState();
        int next = current + releases;
        if (next < current) // overflow
            throw new Error("Maximum permit count exceeded");
        if (compareAndSetState(current, next))
            return true;
    }
}

与获取信号量的逻辑相反,释放信号量的逻辑是将得到的信号量再归还回去,因此是增加state值的操作,代码本身很容易理解,这里不再赘述。

工具方法

除了以上获取和释放信号量所用到的方法,Semaphore还定义了一些其他方法来帮助我们操作信号量:

tryAcquire

注意,这个tryAcquire不是给acquire方法使用的!!!我们上面分析信号量的获取时说过,获取信号量的acquire方法调用的是AQS的acquireSharedacquireSharedInterruptibly ,而这两个方法会调用子类的tryAcquireShared方法,子类必须实现这个方法。

而这里的tryAcquire方法并没有定义在AQS的子类中,即既不在NonfairSync,也不在FairSync中,对于使用共享锁的AQS的子类,也不需要定义这个方法。事实上它直接定义在Semaphore中的。

所以,在看这个方法时,脑海中一定要有一个意识,虽然它和AQS的独占锁的获取逻辑中的tryAcquire重名了,但实际上它和AQS的独占锁是没有关系的,不要被它的名字绕晕了。

那么,这个tryAcquiretryAcquireShared方法有什么不同呢?只要有两点:

  1. 返回值不同:tryAcquire返回boolean类型,tryAcquireShared返回int
  2. tryAcquire一定是采用非公平锁模式,而tryAcquireShared有公平和非公平两种实现。

理清楚以上几点之后,我们再来看tryAcquire方法的源码,它有四种重载形式: 两种不带超时机制的形式:

代码语言:javascript
复制
public boolean tryAcquire() {
    return sync.nonfairTryAcquireShared(1) >= 0;
}
代码语言:javascript
复制
public boolean tryAcquire(int permits) {
    if (permits < 0) throw new IllegalArgumentException();
    return sync.nonfairTryAcquireShared(permits) >= 0;
}

两种带超时机制的形式:

代码语言:javascript
复制
public boolean tryAcquire(long timeout, TimeUnit unit) throws InterruptedException {
    return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
}
代码语言:javascript
复制
public boolean tryAcquire(int permits, long timeout, TimeUnit unit) throws InterruptedException {
    if (permits < 0) throw new IllegalArgumentException();
    return sync.tryAcquireSharedNanos(permits, unit.toNanos(timeout));
}

其中,不带超时机制的tryAcquire方法实际上调用的就是nonfairTryAcquireShared(int acquires)方法,它和非公平锁的tryAcquireShared一样,只是tryAcquireShared是直接return nonfairTryAcquireShared(acquires),而tryAcquirereturn sync.nonfairTryAcquireShared(1) >= 0;,即直接返回获取锁的操作是否成功。

而带超时机制的tryAcquire方法提供了一种超时等待的方式,这是前面介绍的公平锁和非公平锁的获取锁逻辑中所没有的,它本质上调用了AQS的tryAcquireSharedNanos(int arg, long nanosTimeout)方法:

代码语言:javascript
复制
public final boolean tryAcquireSharedNanos(int arg, long nanosTimeout) throws InterruptedException {
    if (Thread.interrupted())
        throw new InterruptedException();
    return tryAcquireShared(arg) >= 0 ||
        doAcquireSharedNanos(arg, nanosTimeout);
}

这个方法我们在介绍CountDownLatch源码分析]的await(long timeout, TimeUnit unit)方法时已经分析过了,属于老套路了,这里就不展开了。

reducePermits

reducePermits方法用来减少信号量的总数,这在debug中是很有用的,它与前面介绍的acquire方法的不同点在于,即使当前信号量的值不足,它也不会导致调用它的线程阻塞等待。只要需要减少的信号量的数量reductions大于0,操作最终就会成功,也就是说,即使当前的reductions大于现有的信号量的值也没关系,所以该方法可能会导致剩余信号量为负值。

代码语言:javascript
复制
protected void reducePermits(int reduction) {
    if (reduction < 0) throw new IllegalArgumentException();
    sync.reducePermits(reduction);
}
代码语言:javascript
复制
final void reducePermits(int reductions) {
    for (;;) {
        int current = getState();
        int next = current - reductions;
        if (next > current) // underflow
            throw new Error("Permit count underflow");
        if (compareAndSetState(current, next))
            return;
    }
}

我们将它和nonfairTryAcquireShared对比一下:

代码语言:javascript
复制
final int nonfairTryAcquireShared(int acquires) {
    for (;;) {
        int available = getState();
        int remaining = available - acquires;
        if (remaining < 0 ||
            compareAndSetState(available, remaining))
            return remaining;
    }
}

可以看出,两者在CAS前的判断条件并不相同,reducePermits只要剩余值不比当前值大就可以,而nonfairTryAcquireShared必须要保证剩余值不小于0才会执行CAS操作。

drainPermits

相比reducePermits,drainPermits就更简单了,它直接将剩下的信号量一次性消耗光,并且返回所消耗的信号量,这个方法在debug中也是很有用的:

代码语言:javascript
复制
public int drainPermits() {
    return sync.drainPermits();
}
代码语言:javascript
复制
final int drainPermits() {
    for (;;) {
        int current = getState();
        if (current == 0 || compareAndSetState(current, 0))
            return current;
    }
}

实战

以上我们分析了信号量的源码,接下来我们来分析一下官方给的一个使用的例子:

代码语言:javascript
复制
class Pool {
    private static final int MAX_AVAILABLE = 100;
    // 初始化一个信号量,设置为公平锁模式,总资源数为100个
    private final Semaphore available = new Semaphore(MAX_AVAILABLE, true);

    public Object getItem() throws InterruptedException {
        // 获取一个信号量
        available.acquire();
        return getNextAvailableItem();
    }

    public void putItem(Object x) {
        if (markAsUnused(x))
            available.release();
    }

    // Not a particularly efficient data structure; just for demo

    protected Object[] items = ...whatever kinds of items being managed
    protected boolean[] used = new boolean[MAX_AVAILABLE];

    protected synchronized Object getNextAvailableItem() {
        for (int i = 0; i < MAX_AVAILABLE; ++i) {
            if (!used[i]) {
                used[i] = true;
                return items[i];
            }
        }
        return null; // not reached
    }

    protected synchronized boolean markAsUnused(Object item) {
        for (int i = 0; i < MAX_AVAILABLE; ++i) {
            if (item == items[i]) {
                if (used[i]) {
                    used[i] = false;
                    return true;
                } else
                    return false;
            }
        }
        return false;
    }

}

这个例子很简单,我们用items数组代表可用的资源,用used数组来标记已经使用的资源的,used[i]的值为true,则代表items[i]这个资源已经被使用了。

(1) 获取一个可用资源 我们调用getItem()来获取资源,在该方法中会先调用available.acquire()方法请求一个信号量,注意,这里如果当前信号量数不够时,是会阻塞等待的;当我们成功地获取了一个信号量之后,将会调用getNextAvailableItem方法,返回一个可用的资源。

(2) 释放一个资源 我们调用putItem(Object x)来释放资源,在该方法中会先调用markAsUnused(Object item)将需要释放的资源标记成可用状态(即将used数组中对应的位置标记成false), 如果释放成功,我们就调用available.release()来释放一个信号量。

总结

Semaphore是一个有效的流量控制工具,它基于AQS共享锁实现。我们常常用它来控制对有限资源的访问。每次使用资源前,先申请一个信号量,如果资源数不够,就会阻塞等待;每次释放资源后,就释放一个信号量。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-03-22,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 程序员爱酸奶 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 前言
  • 核心属性
  • 构造函数
  • 获取信号量
    • 非公平锁实现
      • 公平锁实现
      • 释放信号量
      • 工具方法
        • tryAcquire
          • reducePermits
            • drainPermits
            • 实战
            • 总结
            领券
            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档