前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >MLIR-Toy-实践-4-转换到LLVM IR运行

MLIR-Toy-实践-4-转换到LLVM IR运行

作者头像
hunterzju
发布2022-04-28 17:50:17
9960
发布2022-04-28 17:50:17
举报
文章被收录于专栏:编译器开发

之前的文章基于MLIR中的Toy教程添加了操作OrOp,并从Toy Dialect降级到了Standard Op。本文主要记录了最终降级到LLVM Dialect并调用LLVM JIT执行的过程。

LLVM中Pattern提供了对IR的便捷操作方式,其中ConversionPattern主要用于Dialect间的转换。而ConversionPatter又分为PartialConversion和FullConversion,上篇文章使用PartialConversion执行了部分降级,本文主要使用了Full Conversion将所有Op降级到LLVM Dialect。

降级到LLVM Dialect

当期获得的IR中除了toy.print,其余Op都被降级到了MLIR先有的几种Dialect中(Standard,Affine,Memref等),这些Dialect都提供了可以降级到LLVM Dialect的接口,而toy.print则需要单独实现从toyllvm的转换方法。

print降级到LLVM

这里需要定义一个ConversionPattern实现toy.printllvm的转换,方法和之前一样:继承ConversionPattern并重写matchAndRewrite方法。

代码语言:javascript
复制
class PrintOpLowering : public ConversionPattern {
public:
  explicit PrintOpLowering(MLIRContext *context)
      : ConversionPattern(toy::PrintOp::getOperationName(), 1, context) {}

  LogicalResult
  matchAndRewrite(Operation *op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    // ...
  }
}

还需要在llvm中创建一个叫做printfFuncOp来代替toy.print操作,该函数的返回值是int类型,输入参数是指向字符串的指针,具体创建过程如下:

代码语言:javascript
复制
  static FlatSymbolRefAttr getOrInsertPrintf(PatternRewriter &rewriter,
                                             ModuleOp module) {
    auto *context = module.getContext();
    if (module.lookupSymbol<LLVM::LLVMFuncOp>("printf"))
      return SymbolRefAttr::get(context, "printf");

    // Create a function declaration for printf, the signature is:
    //   * `i32 (i8*, ...)`
    auto llvmI32Ty = IntegerType::get(context, 32);
    auto llvmI8PtrTy = LLVM::LLVMPointerType::get(IntegerType::get(context, 8));
    auto llvmFnType = LLVM::LLVMFunctionType::get(llvmI32Ty, llvmI8PtrTy,
                                                  /*isVarArg=*/true);

    // Insert the printf function into the body of the parent module.
    PatternRewriter::InsertionGuard insertGuard(rewriter);
    rewriter.setInsertionPointToStart(module.getBody());
    rewriter.create<LLVM::LLVMFuncOp>(module.getLoc(), "printf", llvmFnType);
    return SymbolRefAttr::get(context, "printf");
  }

其他Dialect降级到LLVM

其他方言的转换可以利用已有的转换方法,直接将转换Pattern添加进去即可,转换Pattern的实现在void ToyToLLVMLoweringPass::runOnOperation()中完成:

代码语言:javascript
复制
void ToyToLLVMLoweringPass::runOnOperation() {
  // The first thing to define is the conversion target. This will define the
  // final target for this lowering. For this lowering, we are only targeting
  // the LLVM dialect.
  LLVMConversionTarget target(getContext());
  target.addLegalOp<ModuleOp>();

  // During this lowering, we will also be lowering the MemRef types, that are
  // currently being operated on, to a representation in LLVM. To perform this
  // conversion we use a TypeConverter as part of the lowering. This converter
  // details how one type maps to another. This is necessary now that we will be
  // doing more complicated lowerings, involving loop region arguments.
  LLVMTypeConverter typeConverter(&getContext());

  // Now that the conversion target has been defined, we need to provide the
  // patterns used for lowering. At this point of the compilation process, we
  // have a combination of `toy`, `affine`, and `std` operations. Luckily, there
  // are already exists a set of patterns to transform `affine` and `std`
  // dialects. These patterns lowering in multiple stages, relying on transitive
  // lowerings. Transitive lowering, or A->B->C lowering, is when multiple
  // patterns must be applied to fully transform an illegal operation into a
  // set of legal ones.
  RewritePatternSet patterns(&getContext());
  populateAffineToStdConversionPatterns(patterns);
  populateLoopToStdConversionPatterns(patterns);
  populateMemRefToLLVMConversionPatterns(typeConverter, patterns);
  populateStdToLLVMConversionPatterns(typeConverter, patterns);

  // The only remaining operation to lower from the `toy` dialect, is the
  // PrintOp.
  patterns.add<PrintOpLowering>(&getContext());

  // We want to completely lower to LLVM, so we use a `FullConversion`. This
  // ensures that only legal operations will remain after the conversion.
  auto module = getOperation();
  if (failed(applyFullConversion(module, target, std::move(patterns))))
    signalPassFailure();
}

/// Create a pass for lowering operations the remaining `Toy` operations, as
/// well as `Affine` and `Std`, to the LLVM dialect for codegen.
std::unique_ptr<mlir::Pass> mlir::toy::createLowerToLLVMPass() {
  return std::make_unique<ToyToLLVMLoweringPass>();
}

这个过程中首先定义了转换目标LLVMConversionTargetlegalOp,在添加转换Pattern后应用applyFullConversion()转换到LLVM Dialect中。

CodeGen:输出LLVM IR并使用JIT运行

最后就可以从LLVM Dialect导出LLVM IR,然后调用LLVM JIT执行了。

导出LLVM IR过程将MLIR Module转换到LLVM IR表示,可以直接调用已有接口(toyc.cppdumpLLVMIR()实现):

代码语言:javascript
复制
auto llvmModule = mlir::translateModuleToLLVMIR(module, llvmContext);

调用JIT使用了MLIR中的mlir::ExecutionEngine,使用和LLVM中类似,具体实现在toyc.cpp中的runJIT()中:

代码语言:javascript
复制
int runJit(mlir::ModuleOp module) {
  // Initialize LLVM targets.
  llvm::InitializeNativeTarget();
  llvm::InitializeNativeTargetAsmPrinter();

  // Register the translation from MLIR to LLVM IR, which must happen before we
  // can JIT-compile.
  mlir::registerLLVMDialectTranslation(*module->getContext());

  // An optimization pipeline to use within the execution engine.
  auto optPipeline = mlir::makeOptimizingTransformer(
      /*optLevel=*/enableOpt ? 3 : 0, /*sizeLevel=*/0,
      /*targetMachine=*/nullptr);

  // Create an MLIR execution engine. The execution engine eagerly JIT-compiles
  // the module.
  auto maybeEngine = mlir::ExecutionEngine::create(
      module, /*llvmModuleBuilder=*/nullptr, optPipeline);
  assert(maybeEngine && "failed to construct an execution engine");
  auto &engine = maybeEngine.get();

  // Invoke the JIT-compiled function.
  auto invocationResult = engine->invokePacked("main");
  if (invocationResult) {
    llvm::errs() << "JIT invocation failed\n";
    return -1;
  }

  return 0;
}

总结

至此,新加入的Op已经可以从toy源码中解析到MLIR Toy Dialect中,最终转化到LLVM JIT中执行了。测试命令:

代码语言:javascript
复制
./bin/toyc-ch6 ../../testcode/Ch2/codegen.toy --emit=jit 

整个过程主要熟悉了MLIR中Dialect,ODS,Pattern,Pass这些基础概念和功能。作为一种编译基础设施,MLIR的整个可玩性还是很高的,后续会做更多的探索。

本文使用 Zhihu On VSCode 创作并发布

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2021-12-19,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 降级到LLVM Dialect
    • print降级到LLVM
      • 其他Dialect降级到LLVM
      • CodeGen:输出LLVM IR并使用JIT运行
      • 总结
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档