前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >机器学习-16:MachineLN之感知机源码

机器学习-16:MachineLN之感知机源码

作者头像
MachineLP
发布2022-05-09 14:51:51
2580
发布2022-05-09 14:51:51
举报
文章被收录于专栏:小鹏的专栏

你要的答案或许都在这里:小鹏的博客目录

我想说:

其实很多东西还是要靠自己,靠自己去完成最大的一点就是远离舒适区,试想一下自己每时每刻都要为下一顿能不能吃上饭而奋斗,是一种什么样的体验,估计你连想都不敢想;最近又听到说下岗的问题,有一个人说他除了收钱什么都不会,有时候也要多培养点自己的能力,做好一项,其他的也了解(当然也不了太多),多给自己备好能力,远离舒适区,但无论在哪里都有这么一批人,那你考虑过没有公司万一不景气,第一个下岗的会是谁?下岗了又可以迅速跨到别的领域的又是谁?我做不到这一点,但我在加油,要永远记住:公司不养闲人!比你优秀的人比你还努力,你还好意思说你不会?不会可以学啊,不学永远不会,哈哈,言辞过激了吗,也不知道咋地,最近着魔了吧!!!

除了宁向东的清华管理学课,又在书单中加了香帅的北大金融学课,我也不是想什么都会,装逼啥滴,我也只是想每周拿出两个小时,学点管理学和金融学的的思维方式而已。

下面是加详细注释的感知机代码:又是截图,记住好代码都是敲出来的!下面代码要结合感知机原理来看:MachineLN之感知机

但是代码很方便理解,还有图示:

1. 原始形式的感知机算法:

用来显示样本点 和 分类线:

看一下感知机的分类结果:


2. 对偶形式的感知机算法 (对偶形式要计算gram矩阵)

原理跟上面原始感知机对偶算法差不多,所以只加了简单注释:

推荐阅读:

1. 机器学习-1:MachineLN之三要素

2. 机器学习-2:MachineLN之模型评估

3. 机器学习-3:MachineLN之dl

4. 机器学习-4:DeepLN之CNN解析

5. 机器学习-5:DeepLN之CNN权重更新(笔记)

6. 机器学习-6:DeepLN之CNN源码

7. 机器学习-7:MachineLN之激活函数

8. 机器学习-8:DeepLN之BN

9. 机器学习-9:MachineLN之数据归一化

10. 机器学习-10:MachineLN之样本不均衡

11. 机器学习-11:MachineLN之过拟合

12. 机器学习-12:MachineLN之优化算法

13. 机器学习-13:MachineLN之kNN

14. 机器学习-14:MachineLN之kNN源码

15. 机器学习-15:MachineLN之感知机

16. 机器学习-16:MachineLN之感知机源码

17. 机器学习-17:MachineLN之逻辑回归

18. 机器学习-18:MachineLN之逻辑回归源码

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2018-01-23,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
腾讯云 TI 平台
腾讯云 TI 平台(TencentCloud TI Platform)是基于腾讯先进 AI 能力和多年技术经验,面向开发者、政企提供的全栈式人工智能开发服务平台,致力于打通包含从数据获取、数据处理、算法构建、模型训练、模型评估、模型部署、到 AI 应用开发的产业 + AI 落地全流程链路,帮助用户快速创建和部署 AI 应用,管理全周期 AI 解决方案,从而助力政企单位加速数字化转型并促进 AI 行业生态共建。腾讯云 TI 平台系列产品支持公有云访问、私有化部署以及专属云部署。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档