前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >tf35:tf.estimator

tf35:tf.estimator

作者头像
MachineLP
发布2022-05-09 14:58:35
2600
发布2022-05-09 14:58:35
举报
文章被收录于专栏:小鹏的专栏

MachineLP的Github(欢迎follow):https://github.com/MachineLP

tf.estimator 是Tensorflow的高级API, 可快速训练和评估各种传统机器学习模型。

看下面一段代码, 使用神经网络应用到Iris数据集上。

代码语言:javascript
复制
import os
from six.moves.urllib.request import urlopen

import numpy as np
import tensorflow as tf

# Data sets
IRIS_TRAINING = "iris_training.csv"
IRIS_TRAINING_URL = "http://download.tensorflow.org/data/iris_training.csv"

IRIS_TEST = "iris_test.csv"
IRIS_TEST_URL = "http://download.tensorflow.org/data/iris_test.csv"

def main():
  # If the training and test sets aren't stored locally, download them.
  if not os.path.exists(IRIS_TRAINING):
    raw = urlopen(IRIS_TRAINING_URL).read()
    with open(IRIS_TRAINING, "wb") as f:
      f.write(raw)

  if not os.path.exists(IRIS_TEST):
    raw = urlopen(IRIS_TEST_URL).read()
    with open(IRIS_TEST, "wb") as f:
      f.write(raw)

  # Load datasets.
  training_set = tf.contrib.learn.datasets.base.load_csv_with_header(
      filename=IRIS_TRAINING,
      target_dtype=np.int,
      features_dtype=np.float32)
  test_set = tf.contrib.learn.datasets.base.load_csv_with_header(
      filename=IRIS_TEST,
      target_dtype=np.int,
      features_dtype=np.float32)

  # Specify that all features have real-value data
  feature_columns = [tf.feature_column.numeric_column("x", shape=[4])]

  # Build 3 layer DNN with 10, 20, 10 units respectively.
  classifier = tf.estimator.DNNClassifier(feature_columns=feature_columns,
                                          hidden_units=[10, 20, 10],
                                          n_classes=3,
                                          model_dir="/tmp/iris_model")
  # Define the training inputs
  train_input_fn = tf.estimator.inputs.numpy_input_fn(
      x={"x": np.array(training_set.data)},
      y=np.array(training_set.target),
      num_epochs=None,
      shuffle=True)

  # Train model.
  classifier.train(input_fn=train_input_fn, steps=2000)

  # Define the test inputs
  test_input_fn = tf.estimator.inputs.numpy_input_fn(
      x={"x": np.array(test_set.data)},
      y=np.array(test_set.target),
      num_epochs=1,
      shuffle=False)

  # Evaluate accuracy.
  accuracy_score = classifier.evaluate(input_fn=test_input_fn)["accuracy"]

  print("\nTest Accuracy: {0:f}\n".format(accuracy_score))

  # Classify two new flower samples.
  new_samples = np.array(
      [[6.4, 3.2, 4.5, 1.5],
       [5.8, 3.1, 5.0, 1.7]], dtype=np.float32)
  predict_input_fn = tf.estimator.inputs.numpy_input_fn(
      x={"x": new_samples},
      num_epochs=1,
      shuffle=False)

  predictions = list(classifier.predict(input_fn=predict_input_fn))
  predicted_classes = [p["classes"] for p in predictions]

  print(
      "New Samples, Class Predictions:    {}\n"
      .format(predicted_classes))

if __name__ == "__main__":
    main()
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2018-02-28,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
腾讯云 TI 平台
腾讯云 TI 平台(TencentCloud TI Platform)是基于腾讯先进 AI 能力和多年技术经验,面向开发者、政企提供的全栈式人工智能开发服务平台,致力于打通包含从数据获取、数据处理、算法构建、模型训练、模型评估、模型部署、到 AI 应用开发的产业 + AI 落地全流程链路,帮助用户快速创建和部署 AI 应用,管理全周期 AI 解决方案,从而助力政企单位加速数字化转型并促进 AI 行业生态共建。腾讯云 TI 平台系列产品支持公有云访问、私有化部署以及专属云部署。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档