前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布

LDA

作者头像
裴来凡
发布2022-05-29 10:42:03
3390
发布2022-05-29 10:42:03
举报
文章被收录于专栏:图像处理与模式识别研究所
代码语言:javascript
复制
from time import time
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import offsetbox
from sklearn import (manifold,datasets,decomposition,ensemble,discriminant_analysis,random_projection)
digits=datasets.load_digits(n_class=6)
X=digits.data
y=digits.target
n_samples,n_features=X.shape
n_neighbors=30
#缩放和可视化嵌入向量
def plot_embedding(X,title=None):
    x_min,x_max=np.min(X,0),np.max(X,0)
    X=(X-x_min)/(x_max-x_min)
    plt.figure()
    ax=plt.subplot(111)
    for i in range(X.shape[0]):
        plt.text(X[i,0],X[i,1],str(digits.target[i]),
                 color=plt.cm.Set1(y[i]/10.),
                 fontdict={'weight':'bold','size':9})
    if hasattr(offsetbox,'AnnotationBbox'):
        shown_images=np.array([[1.,1.]])
        for i in range(digits.data.shape[0]):
            dist=np.sum((X[i]-shown_images)**2,1)
            if np.min(dist)<4e-3:
                continue
            shown_images=np.r_[shown_images,[X[i]]]
            imagebox=offsetbox.AnnotationBbox(offsetbox.OffsetImage(digits.images[i],cmap=plt.cm.gray_r),X[i])
            ax.add_artist(imagebox)
    plt.xticks([]), plt.yticks([])
    if title is not None:
        plt.title(title)
#绘制数字图像
n_img_per_row=20
img=np.zeros((10*n_img_per_row,10*n_img_per_row))
for i in range(n_img_per_row):
    ix=10*i+1
    for j in range(n_img_per_row):
        iy=10*j+1
        img[ix:ix+8,iy:iy+8]=X[i*n_img_per_row+j].reshape((8,8))
plt.imshow(img,cmap=plt.cm.binary)
plt.xticks([])
plt.yticks([])
plt.title('选择64维数字数据集')
#线性判别嵌入数字数据集
print("计算线性判别嵌入")
X2=X.copy()
X2.flat[::X.shape[1]+1]+=0.01
t0=time()
X_lda=discriminant_analysis.LinearDiscriminantAnalysis(n_components=2).fit_transform(X2, y)
plot_embedding(X_lda,"线性判别嵌入数字数据集(时间 %.2fs)" %(time()-t0))
plt.show()

算法:LDA是基于线性方法的数据降维方法。

链接:https://github.com/wepe/MachineLearning/tree/master/ManifoldLearning/DimensionalityReduction_DataVisualizing

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-05-21,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 图像处理与模式识别研究所 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档