内部数据治理:第 3 部分 |数据治理的 7 个步骤 在本系列的第一部分中,我们定义了数据治理并研究了导致大规模清理项目的失误。在第二部分中,我们检查了常见的数据治理模型,并回顾了哪些模型最适合不同类型的组织。在这篇文章中,我们将介绍数据治理的七个关键步骤。
即使您了解数据治理的主题,知道从哪里开始仍然是一个挑战。这些步骤将帮助您走上通往有效数据治理框架的正确道路:
第一步是评估各种数据治理模型并选择最适合您组织的模型。数据治理组织的角色因一种模式而异。然而,建立所有权、建立流程和程序对于所有模型都是通用的。以下是数据治理组织的一些共同职责:
数据治理无疑有助于提高数据的一致性,并使其与系统设计保持同步。但是,管理所维护的每条数据并不是一个好主意。必须识别需要治理的数据对象。为治理选择数据对象的一些关键考虑因素包括:
在一段时间内导致不良数据的主要原因之一是没有定义特定数据元素的所有权。在数据治理中,主要目标之一是通过定义治理各个方面的所有权来消除这种混淆。
第一步是在全球或本地级别识别各种数据元素的所有权。战略数据对象和字段需要由一个全球团队拥有,其余的可以在本地级别处理。
下一步是确定以下内容的所有权:
这是必不可少的步骤,可能需要最长的时间。如果在实施过程中记录的数据迁移映射规则可能是一个很好的起点。通常,您需要记录以下内容:
一旦规则被记录下来,下一步就是建立程序,作为实际维护数据的人的指南。建立程序并根据当前情况对其进行更新非常重要。数据治理团队应该拥有这些程序,并根据业务的输入对其进行更新。通常,程序会记录以下内容:
构建用于维护和审计数据的工具在确保遵循流程和程序方面大有帮助。维护过程越困难,不遵循的机会就越大。利用各种工具很有意义,它们可以帮助:
市场上有各种工具可以执行所有这些功能。SAP MDG、Itelligence it.mds 和 SAP Information Steward,所有这些都内置了自动化各种治理流程和确保合规性的功能。
虽然正确维护数据和快速捕获错误很重要,但如果不定义归档策略,治理策略是不完整的。这完成了信息生命周期,并就某些数据元素何时需要退休提供了指导。归档的各种好处包括:
需要为数据归档定义的一些关键方面是: