前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >pod还能这么玩?终于不再担心我的业务了

pod还能这么玩?终于不再担心我的业务了

作者头像
yxxhero
发布2022-05-31 19:30:33
5640
发布2022-05-31 19:30:33
举报
文章被收录于专栏:DevOps充电宝

在日常使用 kubernetes 的过程中中,很多时候我们并没有过多的关心 pod 的到底调度在哪里,只是通过多副本的测试,来提高的我们的业务的可用性,但是当多个相同业务 pod 在分布在相同节点时,一旦节点意外宕机,将会严重影响我们的业务的可用性,鉴于此,kubernetes 中引入了新的 pod 调度策略-topologySpreadConstraints,翻译为拓扑分布约束,今天就让我们揭开其神秘面纱,原来 pod 还可以这么玩。

关键字:topologySpreadConstraints pod拓扑分布约束 kubernetes

pod 拓扑分布约束简介

拓扑分布约束(Topology Spread Constraints)可以控制 Pods 在集群内故障域 之间的分布,例如区域(Region)、可用区(Zone)、节点和其他用户自定义拓扑域。这样做有助于实现高可用并提升资源利用率。 此项功能在 1.18中将其提升为Beta,1.19 中为 stable 状态,可以在生产环境中使用。

节点的故障域标识

拓扑分布约束依赖于节点标签来标识每个节点所在的拓扑域。例如,某节点可能具有标签:node=node1,zone=us-east-1a,region=us-east-1

假设你拥有具有以下标签的一个 4 节点集群:

代码语言:javascript
复制
NAME    STATUS   ROLES    AGE     VERSION   LABELS
node1   Ready    <none>   4m26s   v1.16.0   node=node1,zone=zoneA
node2   Ready    <none>   3m58s   v1.16.0   node=node2,zone=zoneA
node3   Ready    <none>   3m17s   v1.16.0   node=node3,zone=zoneB
node4   Ready    <none>   2m43s   v1.16.0   node=node4,zone=zoneB

在逻辑上看,我们的节点的结构图如下:

由上图可知,逻辑域有两个层次,一是 node 层面,二是 zone 层面,我们可以灵活配置自己的故障域,使我们的业务有更高的可用性。

pod 拓扑分布约束实践

正如我们日常写 yaml 一样,配置 topologySpreadConstraints,同样只需要在 yaml 中定义即可,路径为: pod.spec.topologySpreadConstraints

示例:

代码语言:javascript
复制
apiVersion: v1
kind: Pod
metadata:
  name: mypod
spec:
  topologySpreadConstraints:
    - maxSkew: <integer>
      topologyKey: <string>
      whenUnsatisfiable: <string>
      labelSelector: <object>

你可以定义一个或多个 topologySpreadConstraint 来指示 kube-scheduler 如何根据与现有的 Pod 的关联关系将每个传入的 Pod 部署到集群中。 字段包括:

  • maxSkew 描述 Pod 分布不均的程度。 这是给定拓扑类型中任意两个拓扑域中 匹配的 pod 之间的最大允许差值。它必须大于零。取决于 whenUnsatisfiable 的 取值,其语义会有不同。
    • 当 whenUnsatisfiable 等于 "DoNotSchedule" 时,maxSkew 是目标拓扑域 中匹配的 Pod 数与全局最小值之间可存在的差异。
    • 当 whenUnsatisfiable 等于 "ScheduleAnyway" 时,调度器会更为偏向能够降低 偏差值的拓扑域。
  • topologyKey 是节点标签的键。 如果两个节点使用此键标记并且具有相同的标签值, 则调度器会将这两个节点视为处于同一拓扑域中。调度器试图在每个拓扑域中放置数量 均衡的 Pod。
  • whenUnsatisfiable 指示如果 Pod 不满足分布约束时如何处理:
    • DoNotSchedule(默认)告诉调度器不要调度。
    • ScheduleAnyway 告诉调度器仍然继续调度,只是根据如何能将偏差最小化来对 节点进行排序。
  • labelSelector 用于查找匹配的 pod。匹配此标签的 Pod 将被统计,以确定相应 拓扑域中 Pod 的数量。有关详细信息,请参考标签选择算符。

你可以执行 kubectl explain Pod.spec.topologySpreadConstraints 命令以了解关于 topologySpreadConstraints 的更多信息。

业务应用实践

  1. 单个 TopologySpreadConstraint 假设你拥有一个 4 节点集群,其中标记为 foo:bar 的 3 个 Pod 分别位于 node1、node2 和 node3 中: 示意图:

如果希望新来的 Pod 均匀分布在现有的可用区域,可进行如下配置:

代码语言:javascript
复制
##  示例1-yaml
kind: Pod
apiVersion: v1
metadata:
  name: mypod
  labels:
    foo: bar
spec:
  topologySpreadConstraints:
  - maxSkew: 1
    topologyKey: zone
    whenUnsatisfiable: DoNotSchedule
    labelSelector:
      matchLabels:
        foo: bar
  containers:
  - name: pause
    image: k8s.gcr.io/pause:3.1
  • topologyKey: zone 意味着均匀分布将只应用于存在标签键值对为 "zone:" 的节点。
  • whenUnsatisfiable: DoNotSchedule 告诉调度器如果新的 Pod 不满足约束,则让它保持pengding状态

如果调度器将新的 Pod 放入 "zoneA",Pods 分布将变为 [3, 1],因此实际的偏差 为(3 - 1)= 2 。这违反了 maxSkew: 1 的约定。此示例中,新 Pod 只能放置在 "zoneB" 上:

或者

4

你可以调整 Pod 的配置以满足各种要求:

  • 将 maxSkew 更改为更大的值,比如 "2",这样新的 Pod 也可以放在 "zoneA" 上。
  • 将 topologyKey 更改为 "node",以便将 Pod 均匀分布在节点上而不是区域中。在上面的例子中,如果 maxSkew 保持为 "1",那么传入的 Pod 只能放在 "node4" 上。
  • 将 whenUnsatisfiable: DoNotSchedule 更改为 whenUnsatisfiable: ScheduleAnyway, 以确保新的 Pod 始终可以被调度(假设满足其他的调度 API)。但是,最好将其放置在匹配 Pod 数量较少的拓扑域中。(请注意,这一优先判定会与其他内部调度优先级(如资源使用率等)排序准则一起进行标准化。)
  1. 多个 TopologySpreadConstraints 下面的例子建立在前面例子的基础上。假设你拥有一个 4 节点集群,其中 3 个标记为 foo:bar 的 Pod 分别位于 node1、node2 和 node3 上: 示意图:

可以使用 2 个 TopologySpreadConstraint 来控制 Pod 在 区域和节点两个维度上的分布:

代码语言:javascript
复制
## 示例2-yaml
kind: Pod
apiVersion: v1
metadata:
  name: mypod
  labels:
    foo: bar
spec:
  topologySpreadConstraints:
  - maxSkew: 1
    topologyKey: zone
    whenUnsatisfiable: DoNotSchedule
    labelSelector:
      matchLabels:
        foo: bar
  - maxSkew: 1
    topologyKey: node
    whenUnsatisfiable: DoNotSchedule
    labelSelector:
      matchLabels:
        foo: bar
  containers:
  - name: pause
    image: k8s.gcr.io/pause:3.1

在这种情况下,为了匹配第一个约束,新的 Pod 只能放置在 "zoneB" 中;而在第二个约束中, 新的 Pod 只能放置在 "node4" 上。最后两个约束的结果加在一起,唯一可行的选择是放置 在 "node4" 上。

多个约束之间可能存在冲突。假设有一个跨越 2 个区域的 3 节点集群:

如果对集群应用示例2-yaml配置,会发现 "mypod" 处于 Pending 状态。这是因为:为了满足第一个约束,"mypod" 只能放在 "zoneB" 中,而第二个约束要求 "mypod" 只能放在 "node2" 上。Pod 调度无法满足两种约束。

为了克服这种情况,你可以增加 maxSkew 或修改其中一个约束,让其使用 whenUnsatisfiable: ScheduleAnyway

约定

  • 只有与新的 Pod 具有相同命名空间的 Pod 才能作为匹配候选者。
  • 没有 topologySpreadConstraints[*].topologyKey 的节点将被忽略。这意味着:
    1. 位于这些节点上的 Pod 不影响 maxSkew 的计算。在上面的例子中,假设 "node1" 没有标签 "zone",那么 2 个 Pod 将被忽略, 因此传入的 Pod 将被调度到 "zoneA" 中。2.新的 Pod 没有机会被调度到这类节点上。在上面的例子中,假设一个带有标签 {zone-typo: zoneC} 的 "node5" 加入到集群, 它将由于没有标签键 "zone" 而被忽略。
  • 注意,如果新 Pod 的 topologySpreadConstraints[].labelSelector 与自身的 标签不匹配,将会发生什么。在上面的例子中,如果移除新 Pod 上的标签,Pod 仍然可以调度到 "zoneB",因为约束仍然满足。然而,在调度之后,集群的不平衡程度保持不变。zoneA 仍然有 2 个带有 {foo:bar} 标签的 Pod, zoneB 有 1 个带有 {foo:bar} 标签的 Pod。因此,如果这不是你所期望的,建议工作负载的 topologySpreadConstraints[].labelSelector 与其自身的标签匹配。
  • 如果新 Pod 定义了 spec.nodeSelector 或 spec.affinity.nodeAffinity,则 不匹配的节点会被忽略。

假设你有一个跨越 zoneA 到 zoneC 的 5 节点集群

而且你知道 "zoneC" 必须被排除在外。在这种情况下,可以按如下方式编写 yaml, 以便将 "mypod" 放置在 "zoneB" 上,而不是 "zoneC" 上。同样,spec.nodeSelector 也要一样处理。

代码语言:javascript
复制
kind: Pod
apiVersion: v1
metadata:
  name: mypod
  labels:
    foo: bar
spec:
  topologySpreadConstraints:
  - maxSkew: 1
    topologyKey: zone
    whenUnsatisfiable: DoNotSchedule
    labelSelector:
      matchLabels:
        foo: bar
  affinity:
    nodeAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:
        nodeSelectorTerms:
        - matchExpressions:
          - key: zone
            operator: NotIn
            values:
            - zoneC
  containers:
  - name: pause
    image: k8s.gcr.io/pause:3.1

集群基本的Pod 拓扑分布约束

为集群设置默认的拓扑分布约束也是可能的。默认拓扑分布约束在且仅在以下条件满足 时才会应用到 Pod 上:

  • Pod 没有在其 .spec.topologySpreadConstraints 设置任何约束;
  • Pod 隶属于某个服务、副本控制器、ReplicaSet 或 StatefulSet;

你可以在 调度方案(Schedulingg Profile) 中将默认约束作为 PodTopologySpread 插件参数的一部分来设置。约束的设置采用如前所述的 API,只是 labelSelector 必须为空。选择算符是根据 Pod 所属的服务、副本控制器、ReplicaSet 或 StatefulSet 来设置的。 示例配置:

代码语言:javascript
复制
apiVersion: kubescheduler.config.k8s.io/v1beta1
kind: KubeSchedulerConfiguration

profiles:
  - pluginConfig:
      - name: PodTopologySpread
        args:
          defaultConstraints:
            - maxSkew: 1
              topologyKey: topology.kubernetes.io/zone
              whenUnsatisfiable: ScheduleAnyway
          defaultingType: List

与 PodAffinity/PodAntiAffinity 相比较

在 Kubernetes 中,与“亲和性”相关的指令控制 Pod 的调度方式(更密集或更分散)。

  • 对于 PodAffinity,你可以尝试将任意数量的 Pod 集中到符合条件的拓扑域中。
  • 对于 PodAntiAffinity,只能将一个 Pod 调度到某个拓扑域中。

要实现更细粒度的控制,你可以设置拓扑分布约束来将 Pod 分布到不同的拓扑域下, 从而实现高可用性或节省成本。这也有助于工作负载的滚动更新和平稳地扩展副本规模。

高阶用法

  1. 结合NodeSelector/NodeAffinity一起使用

在pod的拓扑分布约束配置中,可以看到我们只有topologyKey的配置选项,并没有任何关于topologyValues的配置字段,也就是并没有规定pod具体安排在哪些拓扑域,默认情况下,它将搜索所有节点并按"topologyKey"对它们进行分组。有时这可能不是我们想要的结果。例如,假设有一个集群,其节点分别用"env = prod","env = staging"和"env = qa"标记,现在您想将Pod均匀地跨区域放置到"qa"环境中,能办到么?

答案是肯定的。您可以利用NodeSelector或NodeAffinity API规范。在幕后,PodTopologySpread功能将兑现这一点,并计算满足选择器的节点之间的传播约束。示意图:

如上所示,您可以指定spec.affinity.nodeAffinity将搜索范围限制为qa环境,并且在该范围内,会将Pod调度到一个满足topologySpreadConstraints的区域。在这种情况下,它是"zone2"。

  1. 高阶多拓扑分布约束

了解一个TopologySpreadConstraint的工作原理很直观。多个TopologySpreadConstraints是什么情况?在内部,每个TopologySpreadConstraint都是独立计算的,结果集将合并以生成最终的结果集-即合适的节点。

在以下示例中,我们希望同时将Pod调度到具有2个需求的集群中:

  • Pod跨区域均匀放置
  • Pod跨节点均匀放置

示意图:

对于第一个约束,zone1中有3个Pod,zone2中有2个Pod,因此只能将传入的Pod放入zone2中,以满足"maxSkew = 1"约束。换句话说,结果集是nodeX和nodeY。

对于第二个约束,nodeB和nodeX中的Pod过多,因此只能将传入的Pod放入nodeA和nodeY。

现在我们可以得出结论,唯一合格的节点是nodeY-从集合{nodeX,nodeY}(来自第一个约束)和{nodeA,nodeY}(来自第二个约束)的交集中得出。

多个TopologySpreadConstraints功能强大,但是一定要了解与前面的"NodeSelector/NodeAffinity"示例的区别:一个是独立计算结果集,然后将其互连;另一种是根据节点约束的过滤结果来计算topologySpreadConstraints。

注意:如果将两个TopologySpreadConstraints应用于同一{topologyKey,whenUnsatisfiable}元组,则Pod的创建将被阻止,并返回验证错误。 - END -

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-04-28,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 DevOps充电宝 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • pod 拓扑分布约束简介
  • 节点的故障域标识
  • pod 拓扑分布约束实践
  • 业务应用实践
  • 约定
  • 集群基本的Pod 拓扑分布约束
  • 与 PodAffinity/PodAntiAffinity 相比较
  • 高阶用法
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档