前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >ConsensusClusterPlus, 一步到位的一致性聚类!

ConsensusClusterPlus, 一步到位的一致性聚类!

作者头像
生信修炼手册
发布2022-06-09 17:51:57
6.4K0
发布2022-06-09 17:51:57
举报
文章被收录于专栏:生信修炼手册

在之前的文章中分享了一致性聚类的原理,本文介绍下如何用R语言进行分析。ConsensusClusterPlus这个R包,就是专门用于一致性聚类分析的,为了简化调用,甚至将所有的步骤都封装到了一个函数里面,所以其使用方法非常的简单,一共三步

1. 加载R包

2. 把表达量数据读进去

3. 运行一致性聚类的函数

是不是和把大象装进冰箱一样简单,但是我们必须注意,这样简单的背后,实际是一个黑盒子,如果不了解原理,你只能得到结果,但是结果说明了什么信息,你一无所知。

下面是具体步骤

1. 准备输入数据

行为基因,列为样本的表达量数据,为了获得最佳的聚类效果,可以对基因进行筛选, 对矩阵进行归一化操作,代码如下

代码语言:javascript
复制
> library(ALL)
> data(ALL)
> d=exprs(ALL)
# 表达量数据
> d[1:5,1:5]
             01005    01010    03002    04006    04007
1000_at   7.597323 7.479445 7.567593 7.384684 7.905312
1001_at   5.046194 4.932537 4.799294 4.922627 4.844565
1002_f_at 3.900466 4.208155 3.886169 4.206798 3.416923
1003_s_at 5.903856 6.169024 5.860459 6.116890 5.687997
1004_at   5.925260 5.912780 5.893209 6.170245 5.615210
> mad(d[1, ])
[1] 0.2701619
> mads=apply(d,1,mad)
> d=d[rev(order(mads))[1:5000],]
> dim(d)
[1] 5000  128
# 归一化操作
> d = sweep(d,1, apply(d,1,median,na.rm=T))
> dim(d)
[1] 5000  128
> d[1:5,1:5]
              01005     01010       03002     04006       04007
36638_at  1.5561207 0.9521271 -0.05018082  4.780378  3.93006775
39318_at  1.1913532 2.5013225 -2.38793537 -1.199521  1.93626914
38514_at  1.0207162 3.2785671  1.55949145 -3.345919 -0.01548269
266_s_at  1.8292604 0.3624327  1.54913247 -1.286294  1.75669694
38585_at -0.9240204 0.1895020  3.44968363 -2.216822  5.18702726

2. 运行ConsensusClusterPlus

ConsensusClusterPlus就是核心函数了,包括了以下几个参数

1. pItem, 选择80%的样本进行重复抽样

2. pfeature, 选择80%的基因进行重复抽样

3. maxK, 最大的K值,形成一系列梯度

4. reps, 重复抽样的数目

5. clusterAlg, 层次聚类的算法

6. distanc, 距离矩阵的算法

7. title, 输出结果的文件夹名字,包含了输出的图片

8. seed, 随机种子,用于重复结果

注意,在实际运行中,推荐reps设置的更大,比如1000, maxK设置的更大,比如20,具体代码如下

代码语言:javascript
复制
> library(ConsensusClusterPlus)
> title=tempdir()
> results = ConsensusClusterPlus(d,maxK=6,reps=50,pItem=0.8,pFeature=1, title=title,clusterAlg="hc",distance="pearson",seed=1262118388.71279,plot="png", writeTable = TRUE)
end fraction
clustered
clustered
clustered
clustered
clustered

函数的返回值是一个列表,每个列表子项对应给具体的K, K最小值为2

代码语言:javascript
复制
> str(results[[2]])
List of 5
$ consensusMatrix: num [1:128, 1:128] 1 1 0.895 1 1 ...
$ consensusTree  :List of 7
  ..$ merge      : int [1:127, 1:2] -1 -4 -5 -6 -7 -9 -11 -12 -14 -15 ...
  ..$ height     : num [1:127] 0 0 0 0 0 0 0 0 0 0 ...
  ..$ order      : int [1:128] 101 128 127 126 125 124 123 122 121 120 ...
  ..$ labels     : NULL
  ..$ method     : chr "average"
  ..$ call       : language hclust(d = as.dist(1 - fm), method = finalLinkage)
  ..$ dist.method: NULL
  ..- attr(*, "class")= chr "hclust"
$ consensusClass : Named int [1:128] 1 1 1 1 1 1 1 1 1 1 ...
  ..- attr(*, "names")= chr [1:128] "01005" "01010" "03002" "04006" ...
$ ml             : num [1:128, 1:128] 1 1 0.895 1 1 ...
$ clrs           :List of 3
  ..$ : chr [1:128] "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" ...
  ..$ : num 2
  ..$ : chr [1:2] "#A6CEE3" "#1F78B4"

# 一致性矩阵,样本的邻接矩阵
> dim(d)
[1] 5000  128

> dim(results[[2]][["consensusMatrix"]])
[1] 128 128

> results[[2]][["consensusMatrix"]][1:5,1:5]
          [,1]      [,2]      [,3]      [,4]     [,5]
[1,] 1.0000000 1.0000000 0.8947368 1.0000000 1.000000
[2,] 1.0000000 1.0000000 0.9142857 1.0000000 1.000000
[3,] 0.8947368 0.9142857 1.0000000 0.8857143 0.969697
[4,] 1.0000000 1.0000000 0.8857143 1.0000000 1.000000
[5,] 1.0000000 1.0000000 0.9696970 1.0000000 1.000000

> results[[2]][["consensusTree"]]


Call:
hclust(d = as.dist(1 - fm), method = finalLinkage)


Cluster method   : average
Number of objects: 128

# 样本的聚类树
> results[[2]][["consensusTree"]]


Call:
hclust(d = as.dist(1 - fm), method = finalLinkage)


Cluster method   : average
Number of objects: 128

# consensusClass, 样本的聚类结果
> length(results[[2]][["consensusClass"]])
[1] 128
> results[[2]][["consensusClass"]][1:5]
01005 01010 03002 04006 04007
    1     1     1     1     1


# ml, 就是consensusMatrix
> results[[2]][["ml"]][1:5,1:5]
          [,1]      [,2]      [,3]      [,4]     [,5]
[1,] 1.0000000 1.0000000 0.8947368 1.0000000 1.000000
[2,] 1.0000000 1.0000000 0.9142857 1.0000000 1.000000
[3,] 0.8947368 0.9142857 1.0000000 0.8857143 0.969697
[4,] 1.0000000 1.0000000 0.8857143 1.0000000 1.000000
[5,] 1.0000000 1.0000000 0.9696970 1.0000000 1.000000
> results[[2]][["consensusMatrix"]][1:5,1:5]
          [,1]      [,2]      [,3]      [,4]     [,5]
[1,] 1.0000000 1.0000000 0.8947368 1.0000000 1.000000
[2,] 1.0000000 1.0000000 0.9142857 1.0000000 1.000000
[3,] 0.8947368 0.9142857 1.0000000 0.8857143 0.969697
[4,] 1.0000000 1.0000000 0.8857143 1.0000000 1.000000
[5,] 1.0000000 1.0000000 0.9696970 1.0000000 1.000000

# clrs, 颜色
> results[[2]][["clrs"]]
[[1]]
  [1] "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3"
[13] "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3"
[25] "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3"
[37] "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3"
[49] "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3"
[61] "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3"
[73] "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3"
[85] "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#1F78B4"
[97] "#1F78B4" "#1F78B4" "#1F78B4" "#1F78B4" "#1F78B4" "#1F78B4" "#1F78B4" "#A6CEE3" "#1F78B4" "#1F78B4" "#1F78B4" "#1F78B4"
[109] "#1F78B4" "#1F78B4" "#1F78B4" "#1F78B4" "#1F78B4" "#1F78B4" "#A6CEE3" "#1F78B4" "#1F78B4" "#1F78B4" "#1F78B4" "#1F78B4"
[121] "#1F78B4" "#1F78B4" "#1F78B4" "#1F78B4" "#1F78B4" "#1F78B4" "#1F78B4" "#1F78B4"


[[2]]
[1] 2


[[3]]
[1] "#A6CEE3" "#1F78B4"

3. 收集cluster-consensus和item-consensus 矩阵

代码如下

代码语言:javascript
复制
> icl = calcICL(results,title=title,plot="png")
> icl[["clusterConsensus"]]
      k cluster clusterConsensus
[1,] 2       1        0.7681668
[2,] 2       2        0.9788274
[3,] 3       1        0.6176820
[4,] 3       2        0.9190744
[5,] 3       3        1.0000000
[6,] 4       1        0.8446083
[7,] 4       2        0.9067267
[8,] 4       3        0.6612850
[9,] 4       4        1.0000000
[10,] 5       1        0.8175802
[11,] 5       2        0.9066489
[12,] 5       3        0.6062040
[13,] 5       4        0.8154580
[14,] 5       5        1.0000000
[15,] 6       1        0.7511726
[16,] 6       2        0.8802040
[17,] 6       3        0.7410730
[18,] 6       4        0.8154580
[19,] 6       5        0.7390864
[20,] 6       6        1.0000000

> dim(icl[["itemConsensus"]])
[1] 2560    4
> 128 * (2 + 3 + 4 + 5 + 6)
[1] 2560

> icl[["itemConsensus"]][1:5,]
  k cluster  item itemConsensus
1 2       1 28031     0.6173782
2 2       1 28023     0.5797202
3 2       1 43012     0.5961974
4 2       1 28042     0.5644619
5 2       1 28047     0.6259350

4. 结果解读

在输出文件夹中,包含了多种输出可视化结果,每种结果的含义如下

1)consensus matrix 热图

consensus matrix 为样本方阵,数值代表两个同属一个cluster的可能性,取值范围从0到1, 颜色从白色到深蓝色

2)consensus 累计分布图 CDF

对于每个K对应的consensus matrix, 采用100个bin的柱状图来计算累计分布,

CDF图可以用来帮助决定最佳的K值

3)delta area plot

对于每个K, 计算K和K-1相比,CDF 曲线下面积的相对变化,对于K=2, 因为没有K=1, 所以是totla CDF curve area,选取增加不明显的点作为最佳的K值

4)tracling plot

行为样本,列为每个K, 用热图展示样本在每个K下的cluster, 用于定性评估不稳定的聚类和不稳定的样本

·end·

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-04-27,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 生信修炼手册 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档