前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >poj 2478 Farey Sequence(欧拉函数是基于寻求筛法素数)

poj 2478 Farey Sequence(欧拉函数是基于寻求筛法素数)

作者头像
全栈程序员站长
发布2022-07-05 20:03:46
发布2022-07-05 20:03:46
33400
代码可运行
举报
运行总次数:0
代码可运行

大家好,又见面了,我是全栈君

http://poj.org/problem?id=2478

求欧拉函数的模板。

初涉欧拉函数,先学一学它主要的性质。

1.欧拉函数是求小于n且和n互质(包含1)的正整数的个数。

记为φ(n)。

2.欧拉定理:若a与n互质。那么有a^φ(n) ≡ 1(mod n),经经常使用于求幂的模。

3.若p是一个质数,那么φ(p) = p-1。注意φ(1) = 1。

4.欧拉函数是积性函数:

若m与n互质,那么φ(nm) = φ(n) * φ(m)。

若n = p^k且p为质数,那么φ(n) = p^k – p^(k-1) = p^(k-1) * (p-1)。

5.当n为奇数时,有φ(2*n) = φ(n)。

6.基于素数筛的求欧拉函数的重要根据:

设a是n的质因数,若(N%a == 0 && (N/a)%a == 0) 则 φ(N) = φ(N/a)*a; 若(N%a == 0 && (N/a)%a != 0) 则φ(N) = φ(N/a)*(a-1)。

该题就是基于性质六,在线性时间内求欧拉函数。

代码语言:javascript
代码运行次数:0
运行
复制
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <math.h>
#include <string.h>
#include <queue>
#include <string>
#include <stdlib.h>
#define LL long long
#define _LL __int64
#define eps 1e-8
#define PI acos(-1.0)

using namespace std;
const int maxn = 1000010;
const int INF = 0x3f3f3f3f;

int n;
LL num[maxn];

LL phi[maxn]; //相应φ(i)
int flag[maxn]; //flag[i] = 0说明i是素数。否则不是素数
int prime[maxn];//存素数

void get_phi()
{
	int i,j,k;
	memset(flag,0,sizeof(flag));
	phi[1] = 1;
	k = 0;

	for(i = 2; i <= maxn; i++)
	{
		if(!flag[i]) //i是素数
		{
			phi[i] = i-1;
			prime[++k] = i;
		}
		for(j = 1; j <= k && prime[j]*i <= maxn; j++)
		{
			flag[i*prime[j]] = 1;
			if(i % prime[j] == 0)
				phi[i*prime[j]] = phi[i] * prime[j];
			else phi[i*prime[j]] = phi[i] * (prime[j]-1);
		}
	}
}

int main()
{
	get_phi();
	num[1] = 0;
	for(int i = 2; i <= maxn; i++)
		num[i] = num[i-1] + phi[i];

	while(~scanf("%d",&n)&&n)
		printf("%lld\n",num[n]);

	return 0;
}

版权声明:本文博客原创文章,博客,未经同意,不得转载。

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/117698.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022年1月1,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档