目录
金庸笔下有四大内功心法:《易筋经》、《九阴真经》、《九阳神功》和《神照经》,习武之人,必先修炼至高内功心法,再结合武功绝技,方可独步武林。
汽车软件开发过程中的V模型对行业内开发者早已是司空见惯的模型,由于该模型的构图形似字母V,所以俗称V模型。V模型核心思想是通过A-SPICE流程(汽车产业的软件流程改进和能力测定标准)来支持和管理整个开发流程,从需求到源代码的每个过程都有相应的测试。
V模型大体可划分为几个不同的阶段步骤即:功能需求、功能开发、软件开发、软件集成测试、功能集成测试、整车集成测试(系统合格性测试),如下图所示,左边为需求分析和设计开发的过程,右边则为针对左边的测试验证,左边的每个过程是与右边的过程正好相对应。
从系统需求到软件需求,再到软件的释放,需要工具对其进行管理,以达到可追溯,可记录的目的,目前市场主流的工具含有 Door、ClearCase、GIT、SDOM 等,也有公司自己研发的一些流程工具,当然这些工具的运作方式都遵循V流程的需求、研发和测试要求。
系统需求需要系统工程师完成。
基于项目的整体需求,以及软硬件整体定义,对系统逻辑架构进行整体定义,这部分工作包括:硬件功能定义,控制器与其他控制器通信定义,软件简要功能定义。这个过程并不会对具体的技术实现做出定义。
软件需求需要系统工程师完成。
系统工程师根据系统相关方需求说明书、软硬件接口文件、变更通知书等输入,梳理定义软件研发需求说明书,包括操作系统需求、电源管理策略、传感器读取,执行器控制、信号特性需求、存储服务、通信服务,网络管理、故障诊断、标定、程序升级等功能需求和非功能需求。
根据项目规划,制定软件开发计划。
软件需求分析建立需求追踪矩阵,将软件需求映射到系统需求,确保软件要实现的系统需求全部覆盖。
成功实施这个过程的结果如下:
软件架构需要架构工程师完成。
为了建立清晰的、结构化的软件设计,应该统一分配软件需求,然后完成软件架构设计。根据系统相关需求、软硬件接口表、软件需求确定软件架构。将每条软件需求合理分配到软件模块中,定义每个软件模块的输入输出接口、动态行为、资源消耗目标等,评估多种软件架构的优缺点等。
架构工程师需要使用EA等架构软件画出整个控制器软件所有模块的输入输出接口、以及内部动态行为。
如果项目基于AUTOSAR开发,需要架构工程师配置应用层的所有组件,并输出每个组件的ARXML描述文件。
一般来说,还需要架构工程师输出架构文档。
成功实施这个过程的结果如下:
软件单元设计需要软件开发工程师完成。
在此阶段,需要对每个组件内部的算法逻辑进行详细的内部设计。组件功能的详细设计需要与软件需求建立有效的对应关系。
如果是算法逻辑编码,建议使用Matlab进行模型开发,如果是接近底层的复杂驱动,一般是使用手写代码。
如果项目使用AUTOSAR架构,使用模型开发时需要导入arxml生成模型框架进行开发,使用手写代码进行开发时需要使用AUTOSAR工具生成的组件代码框架进行开发。
需要将代码经过多次代码审查和优化之后,将最终版本上传至代码库,以实现最佳的可靠性和性能。
成功实施这个过程的结果如下:
组件单元测试一般需要软件开发工程师完成,也可以让测试工程师完成。
当进行单元测试通过后,将会将软件编译成ECU可执行的文件,比如Hex格式的文件,将其刷写到ECU进行集成测试(或称HIL测试),如果只是测试底层软件,那么一般只需要额外的硬件负载箱支持就行,比如用负载箱来模拟一些传感器信号输入,或制造一些执行器的短路和开路故障;如果测试包括应用层软件,那么就还需要物理模型支持才行,比如电机控制就需要电机的物理模型,变速箱控制可能就需要整个动力传动系统的模型才行。
单元测试与软件单元设计对应。
单元测试是根据软件单元设计,进行代码级别上进行的测试。
单元测试一般可以通过Matlab和Tessy等工具进行。
成功实施这个过程的结果如下:
集成测试需要测试工程师完成。
集成测试与软件需求对应。
集成测试将各个组成部分整合入一个软件系统中之后,最后进行软件的集成测试。根据定义的需求,测试相应的功能是否满足软件需求。
成功实施本过程的结果如下:
系统测试需要测试工程师完成。
系统测试与系统需求对应。
因为软件给各个ECU提供了相应的功能,因此在集成测试中,需要将软件烧录至硬件中。然后ECU要与其他电子系统组件集成起来,比如传感器和执行器。在接下来的系统综合测试中,对所有系统设备的交互响应进行评估。
成功实施本过程的结果如下:
汽车软件开发的过程中有严格的追溯性和一致性要求,每个阶段的过程要求、使用的工具方法和人员要求,前一阶段的输出交付物作为下一阶段输入,在每个阶段完成后对交付物进行验证,在软件集成后在最后阶段进行确认与软件需求的一致性。概览如下图所示:
特斯拉人工智能总监Andrej Karparthy在他的一篇技术博客中提出构建软件2.0技术栈的观点,代码正在从软件 1.0(由人类编写的代码)过渡到软件 2.0(由优化编写的代码,以神经网络训练的形式编写)。
软件1.0 是我们熟悉的V模型(瀑布模型),它是用 Python、C++、C等语言书写的。 它包括程序员对计算机的明确说明,通过编写每行代码,程序员会用一些可取的行为识别程序空间中的特定点。
软件1.0的工程方法遵循以下4个步骤:
软件2.0时代正在逐渐到来,目前AI算法大量应用于自然语言识别、行为分析、决策协助、身份识别等不涉及公众安全的领域,也在自动驾驶、医疗诊断等安全领域也在逐步应用。对于安全关键系统,系统工程方法学是否还适合软件2.0时代,功能安全标准如IEC61508、ISO26262、EN50128不同行业安全软件开发所遵循的标准,是否还能指导软件2.0的开发实践,下面从开发过程、软件需求、开发工具三个方面谈谈想法。
软件1.0的开发生命周期模型按照系统工程V模型的方式开发,从上到下是瀑布式的,规定每个阶段的过程要求、使用的工具方法和人员要求,前一阶段的输出交付物作为下一阶段输入,在每个阶段完成后对交付物进行验证,在软件集成后在最后阶段进行确认与软件需求的一致性。在实际应用中,设计实现阶段和测试阶段,会规划小版本之间的迭代,从整体过程来看还是V模型。
在软件2.0中,软件的行为需求很大程度上取决于所使用的数据集(datasets),数据集不同于传统意义上的数据,以往的数据如传感器数据、系统的参数(如配置参数、校准数据等)或系统使用的数据库(如导航数据库、障碍物数据库等),这些数据可以一定程度上确定系统的行为,但它们并不描述这种行为的逻辑。而机器学习使用的数据集不仅用来提取信息,而且用来建立模型,用来处理其他数据并确定一个系统的行为,确定安全关键系统的需求,等同于软件需求。当软件需求阶段无法获得完整的训练数据集,从V模型来说,后面的架构、设计实现阶段也无法开始。
软件2.0的开发模型始于数据,可以划分为数据管理、模型训练、模型验证、模型部署,这四个阶段不断往复迭代,不是一次性完成的。
既然软件2.0的系统行为主要由数据集决定,系统是否符合其预期功能,很大程度上取决于数据集的质量。要证明数据集对于软件的预期功能在系统的操作环境下是足够的,对于认证来说是非常大的挑战。与软件1.0的需求对比,有以下不同:
ISO26262 软件单元测试用例生成推荐方法
传统软件开发中已建立完善的工具链用于支持开发,集成开发环境,编辑器,编译器,调试器,git集成,单元测试,集成测试工具,在功能安全软件工具的鉴定中,根据工具对软件安全性影响的不同,划分为不同的级别,例如ISO26262-8对软件工具的TCL1、TCL2和TCL3分级。在软件2.0中,也可以按照类似的分类对工具进行分级,但目前还没有完善的开发工具链和如何对工具鉴定的标准。
从软件领域的发展来看,软件2.0所占的规模越来越大,已出现机器自动生成的代码,当这类软件应用于安全关键系统时,有可能彻底改变既有软件的开发模式,需要识别与现有标准的差异,安全关键领域如航空航天、铁路、汽车标准,采用协作的方式在不同领域之间获取经验;对应用软件2.0产品的鉴定也不再是一次性的,与软件2.0生命周期类似,是一个迭代的过程,评估系统运行性能表现是重要环节;软件的变更会更加频繁,如智能网联汽车的OTA功能,对软件变更的评估,应考虑其服务期限、运行设计域差异、产品异常行为记录报告等所有既有数据记录。
参考资料: