随着技术的发展,工业设备设施故障的维护手段从早期的被动事后维护、定期预防性维护检修,逐渐演进到预测性维护。预测性维护可以减少机器故障、延长机械的使用寿命,有效降低维护成本;减少停机时间、提高生产产量及安全性,有效提升企业盈利。
随着 5G 技术的发展和普及,万物互联的时代随之到来。当前预测性维护主要是依靠传感器收集设备信息数据,如何利用好信息时代的便利为生产制造设备保驾护航,成为了设备运维工程师们常常思考的问题。
那如何利用好传感数据进行设备状态把脉?如何更好地实现预测性维护?是用复杂的机理知识?还是用基于繁琐特征工程的传统机器学习?这些方法都不是最优解,基于飞桨深度学习框架的方案能给你更好的选择!
PHM健康管理架构全景图
作为源于产业实践的深度学习平台,飞桨一直致力于为各行各业的开发者提供完备的产业应用开发方案。百度依托飞桨深度学习框架构建了完整的工业数据智能引擎,针对产业界核心问题提供一站式解决方案,助力需求快速落地。
百度工业数据智能引擎
AI Studio产业实践范例库项目链接:
https://aistudio.baidu.com/aistudio/projectdetail/4123335?contributionType=1
本文分享自 PaddlePaddle 微信公众号,前往查看
如有侵权,请联系 cloudcommunity@tencent.com 删除。
本文参与 腾讯云自媒体同步曝光计划 ,欢迎热爱写作的你一起参与!
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2025 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号:粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287
Copyright © 2013 - 2025 Tencent Cloud.
All Rights Reserved. 腾讯云 版权所有