前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >前端的世界里没有“容易”二字

前端的世界里没有“容易”二字

作者头像
桃翁
发布于 2019-09-19 07:31:04
发布于 2019-09-19 07:31:04
8310
举报
文章被收录于专栏:前端桃园前端桃园

转眼,2019年已经过去一大半了。

这半年,你过得怎么样?新的热点技术学会了吗?写的代码还有bug吗?头发还好吗?还记得年初的 Flag 吗?

2019年对于大前端技术领域而言变化不算太大,目前三大技术框架日趋成熟,短期内不大可能出现颠覆性的前端框架。

我将在这篇文章中,带大家盘点一下:2019高级前端必备的 TOP 级知识点。你可以看一下你自己的技术体系和当下流行的技术栈,有多大的区别,以及接下来你该如何去规划自己的学习方向。


1

框架层的更新

React,Vue,Angular依旧保持了前三,今年React发布了16.9,Vue3也即将发版,但是总体情况来看Angular在国内的开发者占有率还是偏低,这个跟当初NG1和NG2的语法巨大变革不无关系(手动捂脸)。同时像Flutter for web(Flutter已经不仅仅可以运行在Android或者iOS上,还可以运行在Windows, MacOS, Linux, Chrome OS甚至是Web上)、还有Omi(融合Web Components 、JSX、HTM、虚拟DOM、功能样式和代理合并到一个小型、高性能的框架)也是值得各位同学关注的。不过前端框架千千万,唯有原理永流传。

2

状态管理

随着前端框架的流行,组件化开发成为主流,然而随着页面复杂度越来越高,在一个组件文件中,要做UI渲染、事件处理、状态管理等等事情,于是一个文件变的越来越复杂。同时,页面组件层级变的复杂后,跨组件间的数据通信也变的很繁琐,需要将数据上提到父节点,通过property传输数据、回调方法更新父节点状态等等。这个时候状态管理也显得尤为重要。一想到状态管理大家肯定脱口而出Vuex、Redux、mobx等等。但是随着React Hooks的愈加成熟,基于Hooks版本的轻量状态管理也非常值得大家关注。https://github.com/mobxjs/mobx-react-lite

3

前端工程化

说到这里,请大家看下边这张我总结的图吧。翘首企盼的Webpack5、一个前端在前端工程化中的具体实践中,要做的工作越来越多。

4

微前端

微前端简单地说,就是将一个巨无霸(Monolith)的前端工程拆分成一个一个的小工程,你也可以理解微服务前端化,每一个小项目完全具备独立的开发、运行能力。整个系统就将由这些小工程协同合作,实现所有页面的展示与交互。微前端也从最初的一个概念变为前端的新宠儿。一图胜千言吧~

5

编程语言

来自statesofjs的统计,在类JS编程语言上,ES6遥遥领先,TypeScript也获得接近半数的使用量。其次是Flow、Reason、Elm和ClojureScript。不过笔者更倾向于TS吧,因为我可以用装饰器很轻松的实现依赖注入,而且像抽象类、接口、类型推断、强类型这里ES6-10还没没有。不过仁者见仁智者见智,选择TS还是ES6还是要看具体的项目而定。

6

其他

其实整个大前端体系还有非常多需要提的比如工程化、服务端、监控、测试、跨端、等等,篇幅有限笔者写到这为止了。希望大家能够抓住当下大前端发展发展的新趋势,找一份更好的offer。

写在最后

看到这里,你是不是想大喊:老子学不动了?成年人的世界没有“容易”二字,你学不动,别人学得动,你只能靠边站。但是为了给家人更好的生活,为了自己的梦想,你必须坚持下去。

引用张爱玲的一句话:中年以后的男人,时常会觉得很孤独,因为他一睁开眼,周围都是要依靠他的人,却没有他可以依靠的人。

前端技术路漫漫,成长的曲线非常的陡峭。老袁从业前端8年,冷暖自知,也希望大家能够跟上这个时代,工作顺利。

我曾经也是一名初级前端,我深知对于初级前端工程师来说,每天的工作大部分可能是搬砖,当你想跳槽涨薪的时候,你会发现自己的技术早就脱节了。

如果你想跟上前端高速发展的时代,如果你也想月薪3万不是终点,是起点,如果你也想做点改变,

真的不妨来参加为1-3年前端同学精心准备的前端训练营:

【高级前端必备的TOP级知识点】

???

大纲如下:

1.TypeScript+Webpack环境搭建

  • 构建基于TypeScript编译和运行环境
  • 构建基于tsx组件化思想Webpack环境
  • 构建TypeScript对Node.js的编译支持

2.React hooks 实战应用

  • 去 Redux 使用React hooks 完成状态管理
  • 使用React hooks+Functional components

3.集成BFF开发模式完成真假路由混用

  • 搭建基于Nest.js的后端开发环境
  • 将React项目发布至其前端进行集成
  • 完成BFF+SPA整体项目的测试环境搭建

4.Webpack开发SPA与MPA核心知识

  • 了解SPA与MPA开发的性能指标区别
  • CSS in JS & JS in CSS工程实践
  • 学习Webpack优化SPA与MPA配置区别

5.基于AST实现简版Webpack

  • 了解Webpack基础运行原理
  • 了解AST在前端开发具体用途
  • 从0到1带你手写简版的Webpack

6.Webpack5新特性尝鲜与微前端

  • 学习Webpack5最新特性和进展
  • 学习Webpack在微前端具体实现细节
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-09-18,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 前端桃园 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
ICML 2023 Workshop | Siamese SIREN:隐式神经表征的音频压缩
隐式神经表征 (INRs) 已经成为一种很有前景的表示各种数据模式的方法,包括3D形状、图像和音频。虽然最近的研究已经证明了 INRs 在图像和 3D 形状压缩方面的成功应用,但它们在音频压缩方面的潜力仍未得到充分开发。基于此,本文提出了一项关于使用 INRs 进行音频压缩的初步研究。
用户1324186
2023/09/27
5880
ICML 2023 Workshop | Siamese SIREN:隐式神经表征的音频压缩
Relu激活函数Out了?正弦周期激活函数在隐式神经表示中大显神威!
下图就是一些我们经常使用的激活函数,从这些激活函数的图像可以看出它们有的是局部线性的有的是非线性的,有的是一个函数表达式下来的,有的是分段的。但其表达式好像都不是很常见,给人一种应凑的感觉有没有?
AI科技评论
2020/07/15
2.4K0
Relu激活函数Out了?正弦周期激活函数在隐式神经表示中大显神威!
学界 | 深度神经网络为什么不易过拟合?傅里叶分析发现固有频谱偏差
众所周知,过参数化的深度神经网络(DNN)是一类表达能力极强的函数,它们甚至可以以 100% 的训练准确率记住随机数据。这种现象就提出了一个问题:为什么它们不会轻易地过度拟合真实数据?为了回答这个问题,我们使用傅立叶分析研究了深度神经网络。我们证明了具有有限权重(或者经过有限步训练)的深度神经网络天然地偏向于在输入空间上表示光滑的函数。具体而言,深度 ReLU 网络函数的一个特定频率分量(k)的大小至少以 O(k^(-2))的速率衰减,网络的宽度和深度分别以多项式和指数级别帮助网络对更高的频率建模。这就说明了为什么深度神经网络不能完全记住 delta 型的峰函数。我们的研究还表明深度神经网络可以利用低维数据流形的几何结构来用简单的函数逼近输入空间中存在于简单函数流形上的复杂函数。结果表明,被网络分类为属于某个类的所有样本(包括对抗性样本)都可以通过一条路径连接起来,这样沿着该路径上的网络预测结果就不会改变。最后,我们发现对应于高频分量的深度神经网络(DNN)参数在参数空间中所占的体积较小。
机器之心
2018/07/26
9870
学界 | 深度神经网络为什么不易过拟合?傅里叶分析发现固有频谱偏差
如何从频域的角度解释CNN(卷积神经网络)?
时域卷积=频域乘积,卷积神经网络大部分的计算也在卷积部分,如何从频域的角度思考卷积神经网络,如何从频域的角度解释ResNet。
abs_zero
2020/11/11
1.3K0
如何从频域的角度解释CNN(卷积神经网络)?
性能优于ReLU,斯坦福用周期激活函数构建隐式神经表示,Hinton点赞
这个非线性激活函数效果比 ReLU 还好?近日,斯坦福大学的一项研究《Implicit Neural Representations with Periodic Activation Functions》进入了我们的视野。这项研究提出利用周期性激活函数处理隐式神经表示,由此构建的正弦表示网络(sinusoidal representation network,SIREN)非常适合表示复杂的自然信号及其导数。
机器之心
2020/06/29
1.5K0
性能优于ReLU,斯坦福用周期激活函数构建隐式神经表示,Hinton点赞
ICML 2019 | SGC:简单图卷积网络
题目:Simplifying Graph Convolutional Networks
Cyril-KI
2022/11/17
8870
ICML 2019 | SGC:简单图卷积网络
SIREN周期激活函数
CNN强大的学习能力使其能拟合任意函数,然而这种网络架构无法对信号进行细致的建模,很难去表示信号在时域,空域的衍生信息。我们提出以「周期激活函数来表示隐式神经网络」,并「证明这些网络非常适合复杂的自然信号及其导数」。而在实验中也表明SIREN相较于其他激活函数对于音视频任务有更好的效果。
BBuf
2020/07/09
1.9K0
SIREN周期激活函数
另一个角度看神经网络回归-频域分析
神经网络模型被广泛应用在回归问题中。神经网络模型的回归精度与训练数据的分布有关。本文从训练数据的频域的角度来对该问题进行分析
绿盟科技研究通讯
2019/12/11
2K0
另一个角度看神经网络回归-频域分析
WACV 2023 | ImPosing:用于视觉定位的隐式姿态编码
标题:ImPosing:Implicit Pose Encoding for Efficient Visual Localization
3D视觉工坊
2023/04/30
3070
WACV 2023 | ImPosing:用于视觉定位的隐式姿态编码
上海交大 | 神经网络的两个简单偏好(频率原则、参数凝聚)
我是 2017 年 11 月开始接触深度学习,至今刚好五年。2019 年 10 月入职上海交大,至今三年,刚好第一阶段考核。2022 年 8 月 19 号,我在第一届中国机器学习与科学应用大会做大会报告,总结这五年的研究以及展望未来的方向。本文是该报告里关于理论方面的研究总结(做了一点扩展)。报告视频链接可以见:
ShuYini
2022/12/06
2.5K0
上海交大 | 神经网络的两个简单偏好(频率原则、参数凝聚)
深度神经网络中的数学,对你来说会不会太难?
选自MIT 机器之心编译 参与:Jane W 这是一篇讲解深度学习数学的系列文章,但并非是基础数学,还涉及到了拓扑与测度论等内容。本文为该系列文章的第一部分,机器之心会持续把后续内容全部放出。更规范
机器之心
2018/05/09
7050
深度神经网络中的数学,对你来说会不会太难?
2025最新卷积神经网络(CNN)详细介绍及其原理详解
本文详细介绍了卷积神经网络(CNN)的基础概念和工作原理,包括输入层、卷积层、池化层、全连接层和输出层的作用。通过举例和图解,阐述了CNN如何处理图像,提取特征,以及如何进行手写数字识别。此外,讨论了池化层的平移不变性和防止过拟合的重要性。 本文是关于卷积神经网络(CNN)技术教程,整体内容从基础概念到实际示例,逐层剖析 CNN 的各个组成部分与作用,并通过手写数字识别案例帮助大家更直观地理解其工作原理。
猫头虎
2025/06/08
1.4K0
2025最新卷积神经网络(CNN)详细介绍及其原理详解
NeurIPS 2023 | 神经网络图像压缩:泛化、鲁棒性和谱偏
目前,神经图像压缩(NIC)在分布内(in-distribution, IND)数据的 RD 性能和运行开销表现出了卓越的性能。然而,研究神经图像压缩方法在分布外(out-of-distribution, OOD)数据的鲁棒性和泛化性能方面的工作有限。本文的工作就是围绕以下关键问题展开的:
用户1324186
2024/01/04
5200
NeurIPS 2023 | 神经网络图像压缩:泛化、鲁棒性和谱偏
Tacotron2论文阅读
这篇论文描述了Tacotron 2, 一个直接从文本合成语音的神经网络架构。系统由两部分构成,一个循环seq2seq结构的特征预测网络,把字符向量映射为梅尔声谱图,后面再接一个WaveNet模型的修订版,把梅尔声谱图合成为时域波形。我们的模型得到了4.53的平均意见得分(MOS),专业录制语音的MOS得分是4.58。为了验证模型设计,我们对系统的关键组件作了剥离实验研究,并且评估了使用梅尔频谱替代语言学、音长和F0特征作为WaveNet输入带来的不同影响。我们进一步展示了使用紧凑的声学中间表征可以显著地简化WaveNet架构
mathor
2020/08/13
1.6K0
90后华裔教授一年连发三篇Nature子刊!首个量子神经网络QuantumFlow开源
---- 新智元报道   作者:姜炜文 编辑:好困 【新智元导读】近日,华裔教授姜炜文再获量子计算革命性突破,在QuantumWeek上开源了首个量子神经网络设计栈,加速了神经网络在量子计算机上的发展。 神经网络是当下计算应用中发展最快,使用最广的机器学习算法。然而,随着应用不断复杂化导致网络结构不断扩大,存储性能瓶颈已逐渐凸显。 在传统计算平台上,N个数字比特只能表示1个N位数据,然而在量子计算中,M个量子比特却同时能表示2^M个数据,并能同时操作这些数据。 量子计算机如此强大的存储与计算能力,使其
新智元
2023/05/22
3360
90后华裔教授一年连发三篇Nature子刊!首个量子神经网络QuantumFlow开源
一位上海交大教授的深度学习五年研究总结
我是2017年11月开始接触深度学习,至今刚好五年。2019年10月入职上海交大,至今三年,刚好第一阶段考核。2022年8月19号,我在第一届中国机器学习与科学应用大会做大会报告,总结这五年的研究以及展望未来的方向。本文是该报告里关于理论方面的研究总结(做了一点扩展)。报告视频链接可以见:https://www.bilibili.com/video/BV1eB4y1z7tL/
黄博的机器学习圈子
2022/11/07
9000
一位上海交大教授的深度学习五年研究总结
既是自编码器,也是RNN,DeepMind科学家八个视角剖析扩散模型
如果你尝试过目前最火的 AI 绘画工具之一 Stable Diffusion,那你就已经体验过扩散模型(diffusion model)那强大的生成能力。但如果你想更进一步,了解其工作方式,你会发现扩散模型的形式其实有很多种。
机器之心
2023/09/08
5710
既是自编码器,也是RNN,DeepMind科学家八个视角剖析扩散模型
图神经网络 GNN GAT & GCN(一)
知乎: https://www.zhihu.com/people/gong-jun-min-74
zenRRan
2020/04/21
3.6K0
图神经网络 GNN GAT & GCN(一)
最基本的25道深度学习面试问题和答案
近年来,对深度学习的需求不断增长,其应用程序被应用于各个商业部门。各公司现在都在寻找能够利用深度学习和机器学习技术的专业人士。在本文中,将整理深度学习面试中最常被问到的25个问题和答案。如果你最近正在参加深度学习相关的面试工作,那么这些问题会对你有所帮助。
deephub
2022/11/11
9840
最基本的25道深度学习面试问题和答案
解读 | 如何从信号分析角度理解卷积神经网络的复杂机制?
机器之心原创 作者:Qintong Wu 参与:Jane W 随着复杂和高效的神经网络架构的出现,卷积神经网络(CNN)的性能已经优于传统的数字图像处理方法,如 SIFT 和 SURF。在计算机视觉领域,学者们开始将研究重点转移到 CNN,并相信 CNN 是这一领域的未来趋势。但是,人们对成效卓著的 CNN 背后的机理却缺乏了解。研究 CNN 的运行机理是当今一个热门话题。基本上,有三种主流观点:1>优化、2>近似、3>信号。前两种观点主要集中在纯数学分析,它们试图分析神经网络的统计属性和收敛性,而第三种观
机器之心
2018/05/07
8570
解读 | 如何从信号分析角度理解卷积神经网络的复杂机制?
推荐阅读
相关推荐
ICML 2023 Workshop | Siamese SIREN:隐式神经表征的音频压缩
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档