摘要:本文作者彭明德,介绍了钱大妈与阿里云 Flink 实时计算团队共建实时风控规则引擎,精确识别羊毛党以防营销预算流失。主要内容包括:
一、项目背景
目前钱大妈基于云原生大数据组件(DataWorks、MaxCompute、Flink、Hologres)构建了离线和实时数据一体化的全渠道数据中台,为各业务线提供 BI 报表及数据接口支持。除了数仓的分析场景以外,钱大妈面临着业务系统中的风控需求,例如每季度的营销费用中被不少的羊毛党薅走正常用户的利益,其中羊毛党一方面可能导致用户的口碑下降,另一方面也会影响原有的活动运营预算迅速攀升从而导致资损。钱大妈与阿里云 Flink 实时计算团队共建实时风控规则引擎,精确识别羊毛党以防营销预算流失。
图一:钱大妈实时风控流程示意图
二、业务架构
钱大妈风控业务架构如图二所示总共分为四个部分:事件接入、风险感知、风险应对、风险回溯。通过 Flink 在线 ETL 加工处理的实时用户画像标签和销售事实指标,除了作为线上 BI 指标和实时大屏数据展示,也为实时规则引擎的事件接入提供重要的数据支持。
图二:钱大妈实时风控业务架构图
三、规则模型
风控业务专员通过产品界面简单配置即可实时动态发布风控规则,同时对在线 Flink 作业的规则进行新增、更新以及删除,其中风控规则模型主要分为统计型规则和序列型规则,相同模型支持子规则的嵌套,不同模型之间可以通过与、或关系进行组合。
图三:钱大妈Flink作业DAG抽象图
以下为规则组合中需要动态配置能力的配置项:
图四:实时风控规则配置业务逻辑简图
四、难点攻坚
针对规则模型的流式序列型数据,我们选择 Flink CEP 处理事件序列匹配,由于我们整个风控作业使用 Flink 实现,并且 Flink CEP 作为 Flink 官方原生支持的 Library,集成度高无需引用额外组件即可满足事件序列匹配的需求。作业预期是允许用户在产品界面上热发布规则的,但是基于开源的 Flink CEP,实现规则动态更新能力存在以下困难点:
阿里云 Flink 实时计算团队和钱大妈工程师共同攻坚,在 Flink 社区发起如下两个 FLIP 提案并且在阿里云实时计算产品上面输出相应功能解决此问题:
阿里云实时计算产品输出的支持多规则和动态规则变更、支持 Pattern 定义事件之间的超时以及支持基于 IterativeCondition 的累加器功能拓宽 Flink 在实时风控的能力,并且上述功能已经在钱大妈生产环境落地实践。其中 Flink CEP 动态更新 Pattern 机制中内部各组件的交互总览如下:
图五:社区Flink CEP动态Pattern机制
风控规则由产品界面作为入口,规则写入到 Hologres 中,同时 JDBCPatternProcessorDiscover 周期性轮询发现规则的变更。其中规则表的数据结构如下:
图六:社区Flink动态CEP规则表
五、回顾展望
基于 Flink 的实时风控解决方案已接应用于钱大妈集团内部生产环境,在此解决方案里未引入新的技术组件和编程语言,最大化复用 Flink 资源实现实时风控场景需求,极大降低新组件引入存在的潜在运维风险。另一方面也极大降低研发团队的学习成本,高效释放实时计算的人力资源,并且对于研发和业务应用上面带来如下好处:
后续钱大妈将和阿里云实时计算产品团队,继续共建完善基于 Flink 的实时风控风控解决方案,其中在 Flink CEP 的未来规划将围绕以下三个主要方向展开:
公司简介:钱大妈是在社区生鲜连锁中,以”不卖隔夜肉”作为品牌理念的的行业开拓者。在成立之初即从新鲜角度重新梳理传统生鲜行业的标准,对肉菜市场进行新的定义。钱大妈已全国布局近 30 座城市,门店总数突破 3000 多家,服务家庭超 1000 万。
本文作者:彭明德,目前就职于钱大妈,任全渠道数据中台大数据开发工程师。
同时也希望更多有实时风控需求,或热爱风控场景建设的小伙伴能够在 Flink 社区风控钉钉专群进行沟通:
1 FLIP-200:https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=195730308
本文为从大数据到人工智能博主「maolv, xiao」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。