前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >Python 股票历史数据的获取

Python 股票历史数据的获取

作者头像
全栈程序员站长
发布于 2022-09-12 01:55:05
发布于 2022-09-12 01:55:05
3.6K01
代码可运行
举报
运行总次数:1
代码可运行

大家好,又见面了,我是你们的朋友全栈君。

获取股票数据的接口很多,免费的接口有新浪、网易、雅虎的API接口,收费的就是证券公司及相应的公司提供的接口。 收费试用的接口一般提供的数据只是最近一年或三年的,限制比较多,除非money足够多。 所以本文主要讨论的是免费数据的获取及处理。

国内提供股票数据的接口如sinajs,money.163.com,yahoo,它们提供的API接口不同,每家提供的数据大同小异,可以选择一家的数据来处理。 目前,国内有一个开源的财经数据获取包,封装了上述的接口,不需关系数据源从哪去,它会优先从最快的源来取数据。使用起来非常方便。它是TuShare,具体的安装使用见链接。

本文基于TuShare的数据获取基础上开发,介绍如何获取A股所有股票的历史K线数据。

一、获取A股上市公司列表

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
import tushare as ts
import pandas as pd
def download_stock_basic_info():

    try:
        df = ts.get_stock_basics()
        #直接保存到csv
        print 'choose csv'
        df.to_csv('stock_basic_list.csv');
        print 'download csv finish'

股票列表中包括当前A股的2756只股票的基本信息,包括:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
code,代码
name,名称
industry,所属行业
area,地区
pe,市盈率
outstanding,流通股本
totals,总股本()
totalAssets,总资产()
liquidAssets,流动资产
fixedAssets,固定资产
reserved,公积金
reservedPerShare,每股公积金
eps,每股收益
bvps,每股净资
pb,市净率
timeToMarket,上市日期

二、获取单只股票的历史K线

获取的日K线数据包括:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
date : 交易日期 (index)
open : 开盘价(前复权,默认)
high : 最高价(前复权,默认)
close : 收盘价(前复权,默认)
low : 最低价(前复权,默认)
open_nfq : 开盘价(不复权)
high_nfq : 最高价(不复权)
close_nfq : 收盘价(不复权)
low_nfq : 最低价(不复权)
open_hfq : 开盘价(后复权)
high_hfq : 最高价(后复权)
close_hfq : 收盘价(后复权)
low_hfq : 最低价(后复权)
volume : 成交量
amount : 成交金额

下载股票代码为code的股票历史K线,默认为上市日期到今天的K线数据,支持递增下载,如本地已下载股票60000的数据到2015-6-19,再次运行则会从6.20开始下载,追加到本地csv文件中。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 默认为上市日期到今天的K线数据
# 可指定开始、结束日期:格式为"2015-06-28"
def download_stock_kline(code, date_start='', date_end=datetime.date.today()):

    code = util.getSixDigitalStockCode(code) # 将股票代码格式化为6位数字

    try:
        fileName = 'h_kline_' + str(code) + '.csv'

        writeMode = 'w'
        if os.path.exists(cm.DownloadDir+fileName):
            #print (">>exist:" + code)
            df = pd.DataFrame.from_csv(path=cm.DownloadDir+fileName)

            se = df.head(1).index #取已有文件的最近日期
            dateNew = se[0] + datetime.timedelta(1)
            date_start = dateNew.strftime("%Y-%m-%d")
            #print date_start
            writeMode = 'a'

        if date_start == '':
            se = get_stock_info(code)
            date_start = se['timeToMarket'] 
            date = datetime.datetime.strptime(str(date_start), "%Y%m%d")
            date_start = date.strftime('%Y-%m-%d')
        date_end = date_end.strftime('%Y-%m-%d')  

        # 已经是最新的数据
        if date_start >= date_end:
            df = pd.read_csv(cm.DownloadDir+fileName)
            return df

        print 'download ' + str(code) + ' k-line >>>begin (', date_start+u' 到 '+date_end+')'
        df_qfq = ts.get_h_data(str(code), start=date_start, end=date_end) # 前复权
        df_nfq = ts.get_h_data(str(code), start=date_start, end=date_end) # 不复权
        df_hfq = ts.get_h_data(str(code), start=date_start, end=date_end) # 后复权

        if df_qfq is None or df_nfq is None or df_hfq is None:
            return None

        df_qfq['open_no_fq'] = df_nfq['open']
        df_qfq['high_no_fq'] = df_nfq['high']
        df_qfq['close_no_fq'] = df_nfq['close']
        df_qfq['low_no_fq'] = df_nfq['low']
        df_qfq['open_hfq']=df_hfq['open']
        df_qfq['high_hfq']=df_hfq['high']
        df_qfq['close_hfq']=df_hfq['close']
        df_qfq['low_hfq']=df_hfq['low']

        if writeMode == 'w':
            df_qfq.to_csv(cm.DownloadDir+fileName)
        else:

            df_old = pd.DataFrame.from_csv(cm.DownloadDir + fileName)

            # 按日期由远及近
            df_old = df_old.reindex(df_old.index[::-1])
            df_qfq = df_qfq.reindex(df_qfq.index[::-1])

            df_new = df_old.append(df_qfq)
            #print df_new

            # 按日期由近及远
            df_new = df_new.reindex(df_new.index[::-1])
            df_new.to_csv(cm.DownloadDir+fileName)
            #df_qfq = df_new

        print '\ndownload ' + str(code) +  ' k-line finish'
        return pd.read_csv(cm.DownloadDir+fileName)

    except Exception as e:
        print str(e)        


    return None
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
## private methods ##
#######################

# 获取个股的基本信息:股票名称,行业,地域,PE等,详细如下
# code,代码
# name,名称
# industry,所属行业
# area,地区
# pe,市盈率
# outstanding,流通股本
# totals,总股本()
# totalAssets,总资产()
# liquidAssets,流动资产
# fixedAssets,固定资产
# reserved,公积金
# reservedPerShare,每股公积金
# eps,每股收益
# bvps,每股净资
# pb,市净率
# timeToMarket,上市日期
# 返回值类型:Series
def get_stock_info(code):
    try:
        sql = "select * from %s where code='%s'" % (STOCK_BASIC_TABLE, code)
        df = pd.read_sql_query(sql, engine)
        se = df.ix[0]
    except Exception as e:
        print str(e)
    return se

三、获取所有股票的历史K线

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 获取所有股票的历史K线
def download_all_stock_history_k_line():
    print 'download all stock k-line'
    try:
        df = pd.DataFrame.from_csv(cm.DownloadDir + cm.TABLE_STOCKS_BASIC + '.csv')
        pool = ThreadPool(processes=10)
        pool.map(download_stock_kline, df.index)
        pool.close()
        pool.join()  

    except Exception as e:
        print str(e)
    print 'download all stock k-line'

Map来自函数语言Lisp,map函数能够按序映射出另一个函数。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
urls = ['http://www.yahoo.com', 'http://www.reddit.com']
results = map(urllib2.urlopen, urls)

有两个能够支持通过map函数来完成并行的库:一个是multiprocessing,另一个是鲜为人知但功能强大的子文件:multiprocessing.dummy。 Dummy就是多进程模块的克隆文件。唯一不同的是,多进程模块使用的是进程,而dummy则使用线程(当然,它有所有Python常见的限制)。

通过指定processes的个数来调用多线程。

附:文中用到的其他函数及变量,定义如下:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
TABLE_STOCKS_BASIC = 'stock_basic_list'
DownloadDir = os.path.pardir + '/stockdata/' # os.path.pardir: 上级目录

# 补全股票代码(6位股票代码)
# input: int or string
# output: string
def getSixDigitalStockCode(code):
    strZero = ''
    for i in range(len(str(code)), 6):
        strZero += '0'
    return strZero + str(code)

···

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/152713.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
股票数据API整理
最近在做股票分析系统,数据获取源头成了一大问题,经过仔细的研究发现了很多获取办法,这里整理一下,方便后来者使用。 获取股票数据的源头主要有:数据超市、雅虎、新浪、Google、和讯、搜狐、ChinaStockWebService、东方财富客户端、证券之星、网易财经。 根据最近频繁出现的数据超市,可以无限制获取相关数据,而不再需要使用爬虫等方式获取,这样不仅节省了极大资源,也有利于遍历数据。 列出来相关网站清单,开发者可自行到这些网站查询调用方法。 聚合数据 https://www.juhe.cn/ 百度A
机器学习AI算法工程
2018/03/15
26.2K2
股票数据API整理
Python——量化分析常用命令介绍(三)
量化分析整体思路虽不难,但是要代码实现,其实挺繁杂的,需要很多铺垫工作,比如要先搭建自己的数据库。
Ed_Frey
2019/07/12
5550
用Python绘制专业的K线图【含源代码】
使用Python绘制一幅专业的K线图,是量化投资和金融数据分析的必备功课。下面我将从K线图简介、数据获取、K线图绘制及成交量绘制等方面,结合源代码,一步步实现专业K线图的绘制。
算法爱好者
2021/10/25
6.5K1
用Python绘制专业的K线图【含源代码】
Python获取股票历史数据
闲了的时候还是要学一点金融知识,先不说金融懂多少,但是通过金融的目的来编程其实也还行。总之美好的一天不要浑浑噩噩的度过。我觉得都是值得回忆的美好岁月。我们都知道股票市场有很多交易数据,有人亏损有人盈利。但是赚的人肯定是赚了很久了。赔的人也许会一直亏,但也可能厚积薄发。作为一只初来乍到的程序员,咋没有那种科班背景,所以很多时候唯一能派上用场的的好好学习。那么最基础的肯定需要知道基本知识吧,因为我本人是一只目的和好奇心驱动的猿,所以让我系统的学习某个专业会让我很难接受,主要是学过之后不一定能够形成系统的认知能力。可能效果总比我这样凭感觉的好的多的多。后期再看情况,先不扯这些话题。今天的目标就是记录一下我是如何获取股票数据的。没错我用的是开源的组件,没有写爬虫。因为股票数据是有专业的组织开放的api,里边比较好的是tushare和baostack。然后之前使用tushare还好,还是自从他们升级之后就需要积分了,然后发现自己的积分不够。所以我采用了baostack,但是baostack的问题是“数据不全”。其实也不是数据不全,而是获取全部股票信息的时候返回的数据总是隔三差五。让我对此产生了怀疑。纠结之下发现tushare能够获取全部股票列表,然后我把之前baostack中没有返回的股票代码作为参数调baostack其实也是能返回数据的。那么就是baostack的rs=bs.query_stock_basic()接口的问题?反正已经呵呵哒了,所以我最终采用的策略是使用tushare获取上证和深证的股票,然后调用baostack获取股票的历史交易数据并保存到文件中。
写一点笔记
2020/08/25
3.9K0
Python获取股票历史数据
获取A股行情数据方法[通俗易懂]
做股票量化分析,获取股票行情数据是第一步,结合网上的信息,和我用过的一些东西,做个总结。以后有新信息,逐步完善。
全栈程序员站长
2022/07/25
9.5K0
Python量化学习-提取证券数据
不知道公众号有多少读者买基金或者炒股,分享一下如何用python获取证券信息 1、网易财经 import requests from lxml import etree headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.101 Safari/537.36' } def parse_url(url):
用户9925864
2022/07/27
9870
Python量化学习-提取证券数据
[python]解析通达信盘后数据获取历史日线数据[通俗易懂]
大家好,又见面了,我是你们的朋友全栈君。 转自:http://bbs.pinggu.org/forum.php?mod=viewthread&tid=4804415&page=1 平时我们在做 离线的
全栈程序员站长
2022/09/15
5.3K0
[python]解析通达信盘后数据获取历史日线数据[通俗易懂]
用Python绘制移动均线【含源代码】
上一篇《用Python绘制专业的K线图》,讲解了数据获取、K线图绘制及成交量绘制等内容。本篇将在上一篇的基础上,继续讲解移动均线的绘制。
算法爱好者
2021/10/25
3.2K1
用Python绘制移动均线【含源代码】
[股票预测]股票历史数据获取[通俗易懂]
通过参数设置获取日k线、周k线、月k线,以及5分钟、15分钟、30分钟和60分钟k线数据。本接口只能获取近3年的日线数据,适合搭配均线数据进行选股和分析。
全栈程序员站长
2022/09/12
1.6K0
[股票预测]股票历史数据获取[通俗易懂]
一行代码获取股票、基金数据,并绘制K线图
大家好,我是老表,今天这篇文章和大家分享一下如何利用Python获取股票、基金数据,并进行可视化,为金融分析&可视化先导篇。
老表
2022/10/31
1.8K0
一行代码获取股票、基金数据,并绘制K线图
基于python的证券数据可视化入门(数据不好找,模型不好整)
人工智能的触手遍及各种行业,其中最让人眼红的莫过于金融行业。伸手就能割韭菜,何乐不为!但是,要怎么样才能真正割好韭菜,各路大神也是挠破头了吧。。。现在入门还算迟吗?
一个有趣的灵魂W
2021/01/21
1K0
零代码量化投资:批量下载沪深京 A 股历史行情数据
历史行情数据是做量化投资的基础必用数据。怎么借助ChatGPT来零代码实现批量下载沪深京 A 股历史行情数据呢?
AIGC部落
2024/06/24
8120
零代码量化投资:批量下载沪深京 A 股历史行情数据
python 股票历史数据(python获取股票历史数据)
大家好,又见面了,我是你们的朋友全栈君。 因为最近需要用到股市的各种指数数据,刚开始想的是从同花顺等交易软件直接导出,结果发现要用滚轮滚到最开始的日期,这过于繁琐了,我对于这种重复性的劳动一向不耐烦,而且这种方法在以后每日更新的时候也很不方便。所以我把视线转向了网上的各种api。网上比较普遍的主要有两种,一种是新浪的api,一种是雅虎的api。新浪的api很方便,速度也很快,不过就网上的资料而言,似乎只能提取当天的数据。雅虎的api功能更齐全,但是连接速度比较慢,有时候一个连接请求都要10多秒甚至20
全栈程序员站长
2022/08/01
2.1K0
Python——量化分析常用命令介绍(四)
上节课提到的MongoDB,其实安装很简单的,前几天下载页面打不开,无形中放大了心里阴影面积
Ed_Frey
2019/07/12
5460
Python——量化分析常用命令介绍(四)
如何获取沪深股市历史数据并入库
作为一个技术男,一开始总想着怎么去爬数据。然而一旦发现有免费的数据接口时,瞬间感觉爬来的不香了。。。
全栈程序员站长
2022/09/12
1K0
如何获取沪深股市历史数据并入库
AKShare-股票数据-北交所历史行情
作者寄语 本次更新股票历史行情的数据接口,增加对北交所行情的支持 更新接口 "stock_zh_a_hist" # 历史行情数据-东财 历史行情数据-东财 接口: stock_zh_a_hist
数据科学实战
2022/01/12
1.4K0
AKShare-股票数据-北交所历史行情
金融数据分析与挖掘具体实现方法 -1
关于投资的几个类别,一般我们将天使、VC、PE三个部分统称为私募(Private Equity),指的是没有在证券交易所公开上市交易的资产。
汪凡
2019/03/01
1.5K0
金融数据分析与挖掘具体实现方法 -1
可视化神器Plotly玩转股票图
本文是可视化神器Plotly绘图的第7篇,讲解的是如何通过Plotly来绘制与股市相关的图形,比如基础K线图、OHLC图等。
皮大大
2021/04/28
6.8K0
可视化神器Plotly玩转股票图
如何从tushare获取股票历史数据写入自己的MySQL数据库[通俗易懂]
大家好,又见面了,我是你们的朋友全栈君。 如何从tushare获取股票历史数据写入自己的MySQL数据库 点击 https://tushare.pro/register?reg=414428 ,
全栈程序员站长
2022/09/12
8.5K0
如何从tushare获取股票历史数据写入自己的MySQL数据库[通俗易懂]
AI炒股:获取个股的历史成交价格并画出K线图
你是一个Python编程专家,要完成一个编写Python脚本的任务,具体步骤如下:
AIGC部落
2024/06/24
1.2K0
AI炒股:获取个股的历史成交价格并画出K线图
推荐阅读
相关推荐
股票数据API整理
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验