前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >python数据统计分析「建议收藏」

python数据统计分析「建议收藏」

作者头像
Java架构师必看
发布于 2022-09-12 06:24:18
发布于 2022-09-12 06:24:18
1.8K00
代码可运行
举报
文章被收录于专栏:Java架构师必看Java架构师必看
运行总次数:0
代码可运行

大家好,我是架构君,一个会写代码吟诗的架构师。今天说一说python数据统计分析「建议收藏」,希望能够帮助大家进步!!!

1. 常用函数库

  scipy包中的stats模块和statsmodels包是python常用的数据分析工具,scipy.stats以前有一个models子模块,后来被移除了。这个模块被重写并成为了现在独立的statsmodels包。

 scipy的stats包含一些比较基本的工具,比如:t检验,正态性检验,卡方检验之类,statsmodels提供了更为系统的统计模型,包括线性模型,时序分析,还包含数据集,做图工具等等。

2. 小样本数据的正态性检验

(1) 用途

 夏皮罗维尔克检验法 (Shapiro-Wilk) 用于检验参数提供的一组小样本数据线是否符合正态分布,统计量越大则表示数据越符合正态分布,但是在非正态分布的小样本数据中也经常会出现较大的W值。需要查表来估计其概率。由于原假设是其符合正态分布,所以当P值小于指定显著水平时表示其不符合正态分布。

 正态性检验是数据分析的第一步,数据是否符合正态性决定了后续使用不同的分析和预测方法,当数据不符合正态性分布时,我们可以通过不同的转换方法把非正太态数据转换成正态分布后再使用相应的统计方法进行下一步操作。

(2) 示例

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from scipy import stats
import numpy as np

np.random.seed(12345678)
x = stats.norm.rvs(loc=5, scale=10, size=80) # loc为均值,scale为方差
print(stats.shapiro(x))
# 运行结果:(0.9654011726379395, 0.029035290703177452)

只听到从架构师办公室传来架构君的声音:

黄菊枝头生晓寒。有谁来对上联或下联?

(3) 结果分析

 返回结果 p-value=0.029035290703177452,比指定的显著水平(一般为5%)小,则拒绝假设:x不服从正态分布。

3. 检验样本是否服务某一分布

(1) 用途

 科尔莫戈罗夫检验(Kolmogorov-Smirnov test),检验样本数据是否服从某一分布,仅适用于连续分布的检验。下例中用它检验正态分布。

(2) 示例

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from scipy import stats
import numpy as np

np.random.seed(12345678)
x = stats.norm.rvs(loc=0, scale=1, size=300)
print(stats.kstest(x,'norm'))
# 运行结果:KstestResult(statistic=0.0315638260778347, pvalue=0.9260909172362317)

(3) 结果分析

 生成300个服从N(0,1)标准正态分布的随机数,在使用k-s检验该数据是否服从正态分布,提出假设:x从正态分布。最终返回的结果,p-value=0.9260909172362317,比指定的显著水平(一般为5%)大,则我们不能拒绝假设:x服从正态分布。这并不是说x服从正态分布一定是正确的,而是说没有充分的证据证明x不服从正态分布。因此我们的假设被接受,认为x服从正态分布。如果p-value小于我们指定的显著性水平,则我们可以肯定的拒绝提出的假设,认为x肯定不服从正态分布,这个拒绝是绝对正确的。

4.方差齐性检验

(1) 用途

 方差反映了一组数据与其平均值的偏离程度,方差齐性检验用以检验两组或多组数据与其均值偏离程度是否存在差异,也是很多检验和算法的先决条件。

(2) 示例

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from scipy import stats
import numpy as np

np.random.seed(12345678)
rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)  
rvs2 = stats.norm.rvs(loc=25,scale=9,size=500)
print(stats.levene(rvs1, rvs2))
# 运行结果:LeveneResult(statistic=1.6939963163060798, pvalue=0.19337536323599344)

(3) 结果分析

 返回结果 p-value=0.19337536323599344, 比指定的显著水平(假设为5%)大,认为两组数据具有方差齐性。

5. 图形描述相关性

(1) 用途

 最常用的两变量相关性分析,是用作图描述相关性,图的横轴是一个变量,纵轴是另一变量,画散点图,从图中可以直观地看到相关性的方向和强弱,线性正相关一般形成由左下到右上的图形;负相关则是从左上到右下的图形,还有一些非线性相关也能从图中观察到。

(2) 示例

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
import statsmodels.api as sm
import matplotlib.pyplot as plt
data = sm.datasets.ccard.load_pandas().data
plt.scatter(data['INCOMESQ'], data['INCOME'])

(3) 结果分析

 从图中可以看到明显的正相关趋势。

6. 正态资料的相关分析

(1) 用途

 皮尔森相关系数(Pearson correlation coefficient)是反应俩变量之间线性相关程度的统计量,用它来分析正态分布的两个连续型变量之间的相关性。常用于分析自变量之间,以及自变量和因变量之间的相关性。

(2) 示例

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from scipy import stats
import numpy as np

np.random.seed(12345678)
a = np.random.normal(0,1,100)
b = np.random.normal(2,2,100)
print(stats.pearsonr(a, b))
# 运行结果:(-0.034173596625908326, 0.73571128614545933)

(3) 结果分析

 返回结果的第一个值为相关系数表示线性相关程度,其取值范围在-1,1,绝对值越接近1,说明两个变量的相关性越强,绝对值越接近0说明两个变量的相关性越差。当两个变量完全不相关时相关系数为0。第二个值为p-value,统计学上,一般当p-value<0.05时,可以认为两变量存在相关性。

7. 非正态资料的相关分析

(1) 用途

 斯皮尔曼等级相关系数(Spearman’s correlation coefficient for ranked data ),它主要用于评价顺序变量间的线性相关关系,在计算过程中,只考虑变量值的顺序(rank, 秩或称等级),而不考虑变量值的大小。常用于计算类型变量的相关性。

(2) 示例

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from scipy import stats
import numpy as np

print(stats.spearmanr([1,2,3,4,5], [5,6,7,8,7]))
# 运行结果:SpearmanrResult(correlation=0.82078268166812329, pvalue=0.088587005313543812)

(3) 结果分析

 返回结果的第一个值为相关系数表示线性相关程度,本例中correlation趋近于1表示正相关。第二个值为p-value,p-value越小,表示相关程度越显著。

8. 单样本T检验

(1) 用途

 单样本T检验,用于检验数据是否来自一致均值的总体,T检验主要是以均值为核心的检验。注意以下几种T检验都是双侧T检验。

(2) 示例

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from scipy import stats
import numpy as np

np.random.seed(12345678)
rvs = stats.norm.rvs(loc=5, scale=10, size=(100,2))
print(stats.ttest_1samp(rvs, [1, 5]))
# 运行结果:Ttest_1sampResult(statistic=array([ 5.12435977,  1.07927393]), pvalue=array([  1.47820719e-06,   2.83088106e-01]))

(3) 结果分析

 本例中生成了2列100行的数组,ttest_1samp的第二个参数是分别对两列估计的均值,p-value返回结果,第一列1.47820719e-06比指定的显著水平(一般为5%)小,认为差异显著,拒绝假设;第二列2.83088106e-01大于指定显著水平,不能拒绝假设:服从正态分布。

9. 两独立样本T检验

(1) 用途

 有于比较两组数据是否来自于同一正态分布的总体。注意:如果要比较的两组数据不满足方差齐性, 需要在ttest_ind()函数中添加参数equal_var = False。

(2) 示例

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from scipy import stats
import numpy as np

np.random.seed(12345678)
rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)  
rvs2 = stats.norm.rvs(loc=6,scale=10,size=500)
print(stats.ttest_ind(rvs1,rvs2))
# 运行结果:Ttest_indResult(statistic=-1.3022440006355476, pvalue=0.19313343989106416)

(3) 结果分析

 返回结果的第一个值为统计量,第二个值为p-value,pvalue=0.19313343989106416,比指定的显著水平(一般为5%)大,不能拒绝假设,两组数据来自于同一总结,两组数据之间无差异。

10. 配对样本T检验

(1) 用途

 配对样本T检验可视为单样本T检验的扩展,检验的对象由一群来自正态分布独立样本更改为二群配对样本观测值之差。它常用于比较同一受试对象处理的前后差异,或者按照某一条件进行两两配对分别给与不同处理的受试对象之间是否存在差异。

(2) 示例

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from scipy import stats
import numpy as np

np.random.seed(12345678)
rvs1 = stats.norm.rvs(loc=5,scale=10,size=500) 
rvs2 = (stats.norm.rvs(loc=5,scale=10,size=500) + stats.norm.rvs(scale=0.2,size=500)) 
print(stats.ttest_rel(rvs1,rvs2))
运行结果:Ttest_relResult(statistic=0.24101764965300979, pvalue=0.80964043445811551)

(3) 结果分析

 返回结果的第一个值为统计量,第二个值为p-value,pvalue=0.80964043445811551,比指定的显著水平(一般为5%)大,不能拒绝假设。

11. 单因素方差分析

(1) 用途

 方差分析(Analysis of Variance,简称ANOVA),又称F检验,用于两个及两个以上样本均数差别的显著性检验。方差分析主要是考虑各组之间的均数差别。

 单因素方差分析(One-wayAnova),是检验由单一因素影响的多组样本某因变量的均值是否有显著差异。

 当因变量Y是数值型,自变量X是分类值,通常的做法是按X的类别把实例成分几组,分析Y值在X的不同分组中是否存在差异。

(2) 示例

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from scipy import stats
a = [47,56,46,56,48,48,57,56,45,57]  # 分组1
b = [87,85,99,85,79,81,82,78,85,91]  # 分组2
c = [29,31,36,27,29,30,29,36,36,33]  # 分组3
print(stats.f_oneway(a,b,c))
# 运行结果:F_onewayResult(statistic=287.74898314933193, pvalue=6.2231520821576832e-19)

(3) 结果分析

 返回结果的第一个值为统计量,它由组间差异除以组间差异得到,上例中组间差异很大,第二个返回值p-value=6.2231520821576832e-19小于边界值(一般为0.05),拒绝原假设, 即认为以上三组数据存在统计学差异,并不能判断是哪两组之间存在差异 。只有两组数据时,效果同 stats.levene 一样。

12. 多因素方差分析

(1) 用途

 当有两个或者两个以上自变量对因变量产生影响时,可以用多因素方差分析的方法来进行分析。它不仅要考虑每个因素的主效应,还要考虑因素之间的交互效应。

(2) 示例

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from statsmodels.formula.api import ols
from statsmodels.stats.anova import anova_lm
import pandas as pd
 
X1 = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2] 
X2 = [1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2]
Y  = [76,78,76,76,76,74,74,76,76,55,65,90,65,90,65,90,90,79,70,90, 88,76,76,76,56,76,76,98,88,78,65,67,67,87,78,56,54,56,54,56] 
 
data = {'T':X1, 'G':X2, 'L':Y}
df = pd.DataFrame(data)
formula = 'L~T+G+T:G' # 公式                                        
model = ols(formula,df).fit()
print(anova_lm(model))
'''
运行结果:
            df    sum_sq      mean_sq         F    PR(>F)
T          1.0   265.225   265.225000  2.444407  0.126693
G          1.0   207.025   207.025000  1.908016  0.175698
T:G        1.0  1050.625  1050.625000  9.682932  0.003631
Residual  36.0  3906.100   108.502778       NaN       NaN
'''

(3) 结果分析

 上述程序定义了公式,公式中,"~"用于隔离因变量和自变量,”+“用于分隔各个自变量, ":"表示两个自变量交互影响。从返回结果的P值可以看出,X1和X2的值组间差异不大,而组合后的T:G的组间有明显差异。

13. 卡方检验

(1) 用途

 上面介绍的T检验是参数检验,卡方检验是一种非参数检验方法。相对来说,非参数检验对数据分布的要求比较宽松,并且也不要求太大数据量。卡方检验是一种对计数资料的假设检验方法,主要是比较理论频数和实际频数的吻合程度。常用于特征选择,比如,检验男人和女人在是否患有高血压上有无区别,如果有区别,则说明性别与是否患有高血压有关,在后续分析时就需要把性别这个分类变量放入模型训练。

 基本数据有R行C列, 故通称RC列联表(contingency table), 简称RC表,它是观测数据按两个或更多属性(定性变量)分类时所列出的频数表。

(2) 示例

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
import numpy as np
import pandas as pd
from scipy.stats import chi2_contingency

np.random.seed(12345678)
data = np.random.randint(2, size=(40, 3)) # 2个分类,50个实例,3个特征
data = pd.DataFrame(data, columns=['A', 'B', 'C'])
contingency = pd.crosstab(data['A'], data['B']) # 建立列联表
print(chi2_contingency(contingency)) # 卡方检验
'''
运行结果:
(0.36556036556036503, 0.54543425102570975, 1, 
array([[ 10.45,   8.55],
       [ 11.55,   9.45]]))'''

(3) 结果分析

 卡方检验函数的参数是列联表中的频数,返回结果第一个值为统计量值,第二个结果为p-value值,p-value=0.54543425102570975,比指定的显著水平(一般5%)大,不能拒绝原假设,即相关性不显著。第三个结果是自由度,第四个结果的数组是列联表的期望值分布。

14. 单变量统计分析

(1) 用途

 单变量统计描述是数据分析中最简单的形式,其中被分析的数据只包含一个变量,不处理原因或关系。单变量分析的主要目的是通过对数据的统计描述了解当前数据的基本情况,并找出数据的分布模型。

 单变量数据统计描述从集中趋势上看,指标有:均值,中位数,分位数,众数;从离散程度上看,指标有:极差、四分位数、方差、标准差、协方差、变异系数,从分布上看,有偏度,峰度等。需要考虑的还有极大值,极小值(数值型变量)和频数,构成比(分类或等级变量)。

 此外,还可以用统计图直观展示数据分布特征,如:柱状图、正方图、箱式图、频率多边形和饼状图。

15. 多元线性回归

(1) 用途

 多元线性回归模型(multivariable linear regression model ),因变量Y(计量资料)往往受到多个变量X的影响,多元线性回归模型用于计算各个自变量对因变量的影响程度,可以认为是对多维空间中的点做线性拟合。

(2) 示例

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
import statsmodels.api as sm 
data = sm.datasets.ccard.load_pandas().data
model = sm.OLS(endog = data['AVGEXP'], exog = data[['AGE','INCOME','INCOMESQ','OWNRENT']]).fit()
print(model.summary())
'''
运行结果:
                            OLS Regression Results                            
==============================================================================
Dep. Variable:                 AVGEXP   R-squared:                       0.543
Model:                            OLS   Adj. R-squared:                  0.516
Method:                 Least Squares   F-statistic:                     20.22
Date:                Thu, 31 Jan 2019   Prob (F-statistic):           5.24e-11
Time:                        15:11:29   Log-Likelihood:                -507.24
No. Observations:                  72   AIC:                             1022.
Df Residuals:                      68   BIC:                             1032.
Df Model:                           4                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
AGE           -6.8112      4.551     -1.497      0.139     -15.892       2.270
INCOME       175.8245     63.743      2.758      0.007      48.628     303.021
INCOMESQ      -9.7235      6.030     -1.613      0.111     -21.756       2.309
OWNRENT       54.7496     80.044      0.684      0.496    -104.977     214.476
==============================================================================
Omnibus:                       76.325   Durbin-Watson:                   1.692
Prob(Omnibus):                  0.000   Jarque-Bera (JB):              649.447
Skew:                           3.194   Prob(JB):                    9.42e-142
Kurtosis:                      16.255   Cond. No.                         87.5
==============================================================================
'''

(3) 结果分析

 直接通过返回结果中各变量的P值与0.05比较,来判定对应的解释变量的显著性,P<0.05则认为自变量具有统计学意义,从上例中可以看到收入INCOME最有显著性。

16. 逻辑回归

(1) 用途

 当因变量Y为2分类变量(或多分类变量时)可以用相应的logistic回归分析各个自变量对因变量的影响程度。

(2) 示例

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
import statsmodels.api as sm
data = sm.datasets.ccard.load_pandas().data
data['OWNRENT'] = data['OWNRENT'].astype(int)
model = sm.Logit(endog = data['OWNRENT'], exog = data[['AVGEXP','AGE','INCOME','INCOMESQ']]).fit()
print(model.summary())
'''
运行结果:
Optimization terminated successfully.
         Current function value: 0.504920
         Iterations 8
                           Logit Regression Results                           
==============================================================================
Dep. Variable:                OWNRENT   No. Observations:                   72
Model:                          Logit   Df Residuals:                       68
Method:                           MLE   Df Model:                            3
Date:                Fri, 01 Feb 2019   Pseudo R-squ.:                  0.2368
Time:                        17:05:47   Log-Likelihood:                -36.354
converged:                       True   LL-Null:                       -47.633
                                        LLR p-value:                 4.995e-05
==============================================================================
                 coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
AVGEXP         0.0002      0.001      0.228      0.820      -0.002       0.002
AGE            0.0853      0.042      2.021      0.043       0.003       0.168
INCOME        -2.5798      0.822     -3.137      0.002      -4.191      -0.968
INCOMESQ       0.4243      0.126      3.381      0.001       0.178       0.670
==============================================================================
'''

(3) 结果分析

 直接通过返回结果中各变量的P值与0.05比较,来判定对应的解释变量的显著性,P<0.05则认为自变量具有统计学意义。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022-09-032,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
金融量化 - scipy 教程(01)
前篇已经大致介绍了NumPy,接下来让我们看看SciPy能做些什么。NumPy替我们搞定了向量和矩阵的相关操作,基本上算是一个高级的科学计算器。SciPy基于NumPy提供了更为丰富和高级的功能扩展,在统计、优化、插值、数值积分、时频转换等方面提供了大量的可用函数,基本覆盖了基础科学计算相关的问题。
公众号---人生代码
2020/06/19
1.3K0
金融量化 - scipy 教程(01)
深度好文 | 探索 Scipy 与统计分析基础
云朵君推荐 本文部分内容仅展示部分核心代码,本文提供含完整代码的完整PDF版本下载,获取方式:关注公众号 「数据STUDIO」并回复【210512】获取。若你对代码不感兴趣,直接略过,不影响阅读。
数据STUDIO
2021/06/24
3.1K0
利用python进行T检验
注:ttest_1samp, ttest_ind, ttest_rel均进行双侧检验 H0:μ=μ0H_0: μ=μ_0 H1:μ≠μ0H_1: μ≠μ_0
py3study
2020/01/13
2.5K0
手把手教你使用Python实现常用的假设检验 !
比如:两个样本方差比服从F分布,区间估计就采用F分布计算临界值(从而得出置信区间),最终采用F检验。
我被狗咬了
2020/09/14
2K0
手把手教你使用Python实现常用的假设检验 !
如何检测两组数据是否同分布?
一个模型中,很重要的技巧就是要确定训练集与测试集特征是否同分布,这也是机器学习的一个很重要的假设,但很多时候我们默认这个道理,却很难有方法来保证数据同分布。
Python数据科学
2021/10/08
2.5K0
常用统计检验的Python实现
今天给大家整理了一些使用python进行常用统计检验的命令与说明,请注意,本文仅介绍如何使用python进行不同的统计检验,对于文中涉及的假设检验、统计量、p值、非参数检验、iid等统计学相关的专业名词以及检验背后的统计学意义不做讲解,因此读者应该具有一定统计学基础。
刘早起
2020/04/22
2.3K0
【说站】python中T检验如何理解
1、T检验又称student t检验,主要用于样本含量小(如n-30)、整体标准差σ未知的正态分布。
很酷的站长
2022/11/23
7870
【说站】python中T检验如何理解
Python基本统计分析
配对 Paired Student’s t-test(本例中v1,v2并不是配对样本,这里仅用于演示)
生信探索
2023/03/25
8880
统计系列(四)利用Python进行假设检验
核心:一个多分类自变量与另一个多分类因变量。如检验学历(低、中、高)在收入等级(低、中、高)上的差异
HsuHeinrich
2023/03/16
1.3K0
统计系列(四)利用Python进行假设检验
统计学最重要的10个概念【附Pyhon代码解析】
平均值是一组数据的算术平均数,计算方法是将所有数值相加后除以数据的总数。它是最常用的集中趋势度量,但容易受极端值影响。
统计学家
2024/09/12
1720
统计学最重要的10个概念【附Pyhon代码解析】
机器学习数学基础:常见分布与假设检验
所谓机器学习和深度学习, 背后的逻辑都是数学, 所以数学基础在这个领域非常关键, 而统计学又是重中之重, 机器学习从某种意义上来说就是一种统计学习。
Datawhale
2020/07/09
3.4K0
机器学习数学基础:常见分布与假设检验
python 中的scipy模块
https://docs.scipy.org/doc/scipy-0.18.0/reference/ (参考链接) Python 中常用的统计工具有 Numpy, Pandas, PyMC, Sta
润森
2019/08/29
2.2K0
python 中的scipy模块
单因素方差分析及其相关检验
(1)问题与数据 设某因子有r个水平,记为,在每一水平下各做m次独立重复试 验,若记第i个水平下第j次重复的试验结果为,所有试验的结果可列表如下:
用户3577892
2021/01/02
1.6K0
单因素方差分析及其相关检验
Python统计分析
描述性统计偏度和峰度累计值假设检验和区间估计示例1假设检验置信区间示例2假设检验置信区间
用户3577892
2020/07/14
9250
Python统计分析
概率分析方法与推断统计(来自我写的python书)
在数据分析统计的场景里,常用的方法除了描述性统计方法外,还有推断统计方法,如果再从工作性质上来划分,推断统计包含了参数估计和假设验证这两方面的内容。而推断统计用到了很多概率统计方法,所以本小节在介绍推断统计的内容前,还将讲述一些常用的概率统计方法。
用户1153489
2021/03/02
8150
概率分析方法与推断统计(来自我写的python书)
独家|使用Python进行机器学习的假设检验(附链接&代码)
也许所有机器学习的初学者,或者中级水平的学生,或者统计专业的学生,都听说过这个术语,假设检验。
数据派THU
2019/08/30
1.1K0
独家|使用Python进行机器学习的假设检验(附链接&代码)
KS检验及其在机器学习中的应用
Kolmogorov–Smirnov 检验,简称KS检验,是统计学中的一种非参数假设检验,用来检测单样本是否服从某一分布,或者两样本是否服从相同分布。在单样本的情况下,我们想检验这个样本是否服从某一分布函数,记是该样本的经验分布函数。 我们有假设:为此,我们构造KS统计量:
用户3577892
2020/06/12
4K0
概率、统计学在机器学习中应用:20个Python示例
在数据科学和机器学习领域,概率论和统计学扮演着至关重要的角色。Python作为一种强大而灵活的编程语言,提供了丰富的库和工具来实现这些概念。本文将通过20个Python实例,展示如何在实际应用中运用概率论和统计学知识。
统计学家
2024/09/18
2480
概率、统计学在机器学习中应用:20个Python示例
【Statsmodels和SciPy介绍与常用方法】
Statsmodels 是一个强大的 Python 库,专注于统计建模和数据分析,广泛应用于经济学、金融、生物统计等领域。它提供了丰富的统计模型、假设检验和数据探索工具,适合进行回归分析、时间序列分析等任务。本文将介绍 Statsmodels 的核心功能,并通过代码示例展示其常用方法。
机器学习司猫白
2025/04/29
420
假设检验在数据分析中的应用
在这篇文章中,我不会具体去推导检验统计量和相应拒绝域的得出,这对于大部分非统计学专业的人士来说是晦涩的,我只想通过一个案例告诉大部分初学者假设检验怎么在数据挖掘中使用。
用户3577892
2020/10/09
1.3K0
假设检验在数据分析中的应用
相关推荐
金融量化 - scipy 教程(01)
更多 >
领券
💥开发者 MCP广场重磅上线!
精选全网热门MCP server,让你的AI更好用 🚀
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档