前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >LSM核心实现讲解

LSM核心实现讲解

作者头像
sowhat1412
发布2022-09-20 16:38:27
4030
发布2022-09-20 16:38:27
举报
文章被收录于专栏:sowhat1412

LSM tree (log-structured merge-tree) 是一种对频繁写操作非常友好的数据结构,同时兼顾了查询效率。LSM tree 是许多 key-value 型或日志型数据库所依赖的核心数据结构,例如 BigTable、HBase、Cassandra、LevelDB、SQLite、Scylla、RocksDB 等。

LSM tree 之所以有效是基于以下事实:磁盘或内存的连续读写性能远高于随机读写性能,有时候这种差距可以达到三个数量级之高。这种现象不仅对传统的机械硬盘成立,对 SSD 硬盘也同样成立。如下图:

LSM tree 在工作过程中尽可能避免随机读写,充分发挥了磁盘连续读写的性能优势。

SSTable

LSM tree 持久化到硬盘上之后的结构称为 Sorted Strings Table (SSTable)。顾名思义,SSTable 保存了排序后的数据(实际上是按照 key 排序的 key-value 对)。每个 SSTable 可以包含多个存储数据的文件,称为 segment,每个 segment 内部都是有序的,但不同 segment 之间没有顺序关系。一个 segment 一旦生成便不再修改(immutable)。一个 SSTable 的示例如下:

可以看到,每个 segment 内部的数据都是按照 key 排序的。下面我们来介绍每个 segment 是如何生成的。

写入数据

LSM tree 的所有写操作均为连续写,因此效率非常高。但由于外部数据是无序到来的,如果无脑连续写入到 segment,显然是不能保证顺序的。对此,LSM tree 会在内存中构造一个有序数据结构(称为 memtable),例如红黑树。每条新到达的数据都插入到该红黑树中,从而始终保持数据有序。当写入的数据量达到一定阈值时,将触发红黑树的 flush 操作,把所有排好序的数据一次性写入到硬盘中(该过程为连续写),生成一个新的 segment。而之后红黑树便从零开始下一轮积攒数据的过程。

读取/查询数据

如何从 SSTable 中查询一条特定的数据呢?一个最简单直接的办法是扫描所有的 segment,直到找到所查询的 key 为止。通常应该从最新的 segment 扫描,依次到最老的 segment,这是因为越是最近的数据越可能被用户查询,把最近的数据优先扫描能够提高平均查询速度。

当扫描某个特定的 segment 时,由于该 segment 内部的数据是有序的,因此可以使用二分查找的方式,在 O(logn) 的时间内得到查询结果。但对于二分查找来说,要么一次性把数据全部读入内存,要么在每次二分时都消耗一次磁盘 IO,当 segment 非常大时(这种情况在大数据场景下司空见惯),这两种情况的代价都非常高。一个简单的优化策略是,在内存中维护一个稀疏索引(sparse index),其结构如下图:

稀疏索引是指将有序数据切分成(固定大小的)块,仅对各个块开头的一条数据做索引。与之相对的是全量索引(dense index),即对全部数据编制索引,其中的任意一条数据发生增删均需要更新索引。两者相比,全量索引的查询效率更高,达到了理论极限值 O(logn),但写入和删除效率更低,因为每次数据增删时均需要因为更新索引而消耗一次 IO 操作。通常的关系型数据库,例如 MySQL 等,其内部采用 B tree 作为索引结构,这便是一种全量索引。

有了稀疏索引之后,可以先在索引表中使用二分查找快速定位某个 key 位于哪一小块数据中,然后仅从磁盘中读取这一块数据即可获得最终查询结果,此时加载的数据量仅仅是整个 segment 的一小部分,因此 IO 代价较小。以上图为例,假设我们要查询 dollar 所对应的 value。首先在稀疏索引表中进行二分查找,定位到 dollar 应该位于 dogdowngrade 之间,对应的 offset 为 17208~19504。之后去磁盘中读取该范围内的全部数据,然后再次进行二分查找即可找到结果,或确定结果不存在。

稀疏索引极大地提高了查询性能,然而有一种极端情况却会造成查询性能骤降:当要查询的结果在 SSTable 中不存在时,我们将不得不依次扫描完所有的 segment,这是最差的一种情况。有一种称为**布隆过滤器(bloom filter)**的数据结构天然适合解决该问题。布隆过滤器是一种空间效率极高的算法,能够快速地检测一条数据是否在数据集中存在。我们只需要在写入每条数据之前先在布隆过滤器中登记一下,在查询时即可断定某条数据是否缺失。

布隆过滤器的内部依赖于哈希算法,当检测某一条数据是否见过时,有一定概率出现假阳性(False Positive),但一定不会出现假阴性(False Negative)。也就是说,当布隆过滤器认为一条数据出现过,那么该条数据很可能出现过;但如果布隆过滤器认为一条数据没出现过,那么该条数据一定没出现过。这种特性刚好与此处的需求相契合,即检验某条数据是否缺失。

文件合并(Compaction)

随着数据的不断积累,SSTable 将会产生越来越多的 segment,导致查询时扫描文件的 IO 次数增多,效率降低,因此需要有一种机制来控制 segment 的数量。对此,LSM tree 会定期执行文件合并(compaction)操作,将多个 segment 合并成一个较大的 segment,随后将旧的 segment 清理掉。由于每个 segment 内部的数据都是有序的,合并过程类似于归并排序,效率很高,只需要 O(n)O(n)的时间复杂度。

在上图的示例中,segment 1 和 2 中都存在 key 为 dog 的数据,这时应该以最新的 segment 为准,因此合并后的值取 84 而不是 52,这实现了类似于字典/HashMap 中“覆盖写”的语义。

删除数据

现在你已经了解了 LSM tree 读写数据的方式,那么如何删除数据呢?如果是在内存中,删除某块数据通常是将它的引用指向 NULL,那么这块内存就会被回收。但现在的情况是,数据已经存储在硬盘中,要从一个 segment 文件中间抹除一段数据必须要覆写其之后的所有内容,这个成本非常高。LSM tree 所采用的做法是设计一个特殊的标志位,称为 tombstone(墓碑),删除一条数据就是把它的 value 置为墓碑,如下图所示:

这个例子展示了删除 segment 2 中的 dog 之后的效果。注意,此时 segment 1 中仍然保留着 dog 的旧数据,如果我们查询 dog,那么应该返回空,而不是 52。因此,删除操作的本质是覆盖写,而不是清除一条数据,这一点初看起来不太符合常识。墓碑会在 compact 操作中被清理掉,于是置为墓碑的数据在新的 segment 中将不复存在。

LSM tree 与 B tree 的对比

主流的关系型数据库均以 B/B+ tree 作为其构建索引的数据结构,这是因为 B tree 提供了理论上最高的查询效率 O(log n)O(logn)。但对查询性能的追求也造成了 B tree 的相应缺点,即每次插入或删除一条数据时,均需要更新索引,从而造成一次磁盘 IO。这种特性决定了 B tree 只适用于频繁读、较少写的场景。如果在频繁写的场景下,将造成大量的磁盘 IO,从而导致性能骤降。这种应用场景在传统的关系型数据库中比较常见。

而 LSM tree 则避免了频繁写场景下的磁盘 IO 开销,尽管其查询效率无法达到理想的 O(log n)O(logn),但依然非常快,可以接受。所以从本质上来说,LSM tree 相当于牺牲了一部分查询性能,换取了可观的写入性能。这对于 key-value 型或日志型数据库是非常重要的。

总结

LSM tree 存储引擎的工作原理包含以下几个要点:

  1. 写数据时,首先将数据缓存到内存中的一个有序树结构中(称为 memtable)。同时触发相关结构的更新,例如布隆过滤器、稀疏索引。
  2. 当 memtable 积累到足够大时,会一次性写入磁盘中,生成一个内部有序的 segment 文件。该过程为连续写,因此效率极高。
  3. 进行查询时,首先检查布隆过滤器。如果布隆过滤器报告数据不存在,则直接返回不存在。否则,按照从新到老的顺序依次查询每个 segment。
  4. 在查询每个 segment 时,首先使用二分搜索检索对应的稀疏索引,找到数据所在的 offset 范围。然后读取磁盘上该范围内的数据,再次进行二分查找并获得结果。
  5. 对于大量的 segment 文件,定期在后台执行 compaction 操作,将多个文件合并为更大的文件,以保证查询效率不衰减。
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-09-05,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 sowhat1412 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • SSTable
  • 写入数据
  • 读取/查询数据
  • 文件合并(Compaction)
  • 删除数据
  • LSM tree 与 B tree 的对比
  • 总结
相关产品与服务
数据库
云数据库为企业提供了完善的关系型数据库、非关系型数据库、分析型数据库和数据库生态工具。您可以通过产品选择和组合搭建,轻松实现高可靠、高可用性、高性能等数据库需求。云数据库服务也可大幅减少您的运维工作量,更专注于业务发展,让企业一站式享受数据上云及分布式架构的技术红利!
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档