前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >python pandas fillna_pandas删除行

python pandas fillna_pandas删除行

作者头像
全栈程序员站长
发布2022-09-22 19:30:17
发布2022-09-22 19:30:17
1.5K0
举报

大家好,又见面了,我是你们的朋友全栈君。

DataFrame.fillna(self, value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)

使用指定的方法填充NA/NaN值。

参数:value :scalar(标量), dict, Series, 或DataFrame

用于填充孔的值(例如0),或者是dict / Series / DataFrame的值,

该值指定用于每个索引(对于Series)或列(对于DataFrame)使用哪个值。

不在dict / Series / DataFrame中的值将不被填充。该值不能是列表(list)。

method :{‘backfill’,’bfill’,’pad’,’ffill’,None},默认为None

填充重新索引的系列填充板/填充中的holes的方法:

将最后一个有效观察向前传播到下一个有效回填/填充:

使用下一个有效观察来填充间隙。

axis : {0或’index’,1或’columns’}

填充缺失值所沿的轴。

inplace : bool,默认为False

如果为True,则就地填充。

注意:这将修改此对象上的任何其他视图

(例如,DataFrame中列的无副本切片)。

limit: int,默认值None

如果指定了method,

则这是要向前/向后填充的连续NaN值的最大数量。

换句话说,如果存在连续的NaN数量大于此数量的缺口,

它将仅被部分填充。如果未指定method,

则这是将填写NaN的整个轴上的最大条目数。

如果不为None,则必须大于0。

downcast: dict,默认为None

item-> dtype的字典,如果可能的话,将向下转换,

或者是字符串“infer”,

它将尝试向下转换为适当的相等类型

(例如,如果可能,则从float64到int64)。

返回值:DataFrame

缺少值的对象已填充。

例子>>> df = pd.DataFrame([[np.nan, 2, np.nan, 0],

… [3, 4, np.nan, 1],

… [np.nan, np.nan, np.nan, 5],

… [np.nan, 3, np.nan, 4]],

… columns=list(‘ABCD’))

>>> df

A B C D

0 NaN 2.0 NaN 0

1 3.0 4.0 NaN 1

2 NaN NaN NaN 5

3 NaN 3.0 NaN 4

将所有NaN元素替换为0>>> df.fillna(0)

A B C D

0 0.0 2.0 0.0 0

1 3.0 4.0 0.0 1

2 0.0 0.0 0.0 5

3 0.0 3.0 0.0 4

我们还可以向前或向后传播非null值>>> df.fillna(method=’ffill’)

A B C D

0 NaN 2.0 NaN 0

1 3.0 4.0 NaN 1

2 3.0 4.0 NaN 5

3 3.0 3.0 NaN 4

将“ A”,“ B”,“ C”和“ D”列中的所有NaN元素分别替换为0、1、2和3>>> values = {‘A’: 0, ‘B’: 1, ‘C’: 2, ‘D’: 3}

>>> df.fillna(value=values)

A B C D

0 0.0 2.0 2.0 0

1 3.0 4.0 2.0 1

2 0.0 1.0 2.0 5

3 0.0 3.0 2.0 4

仅替换第一个NaN元素>>> df.fillna(value=values, limit=1)

A B C D

0 0.0 2.0 2.0 0

1 3.0 4.0 NaN 1

2 NaN 1.0 NaN 5

3 NaN 3.0 NaN 4

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/170023.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档