自学记录用,源自 B站SPSS单因素方差分析教程,欢迎指正交流
即比较不同组别的平均值有没有差异。比如我想比较A/B/C三个班的平均年龄有没有差异,就是个很典型的单因素方差分析案例,因素只有班级这一个。举医学上的例子就是:轻度组/中度组/重度组的治疗效果。
计算组间差异与组内差异的比值。组间差异即是轻度/中度/重度这三个组之间的差异;组内差异指的是比如重度组内有30个人,这30个人之间的差异叫组内差异。如果组间差异与组内差异之间的对比程度大的话认为这几个组之间差异显著。
单因素方差分析基于的是F统计,就是组间差异除以组内差异,如果组间差异除以组内差异的商比较大,则对应的F值大,则对应的p值小,p值小于0.05则认为参与研究组别的平均值之间存在显著差异,即核心是组间差异与组内差异的的商要大。
不同组别的平均值不存在显著差异
换句话说就是重度组与轻度组及中度组的治疗效果没有显著差异,如果算出来的p值大于0.05就要接受零假设,反之接受备选假设
至少有一个组别不与其他组相等
注意这个备选假设不是要求每两两之间有差异,仅仅要求有一组存在不同就认为差异显著。一搬来讲,单因素方差分析结果小于0.05还会进一步进行两两比较,事后多重比较来考察具体是哪两组有显著差异。
四个必要条件:
在实际研究中,可以对正态分布和方差相等这两个条件适当放宽,轻微偏态是可以接受的。
统计
–描述性
–界外值
绘图
–直方图
,一定记得勾选带检验的正态图
参数检验:假定数据服从某分布(一般为正态分布),通过样本参数的估计量(x±s)对总体参数(μ)进行检验,比如t检验、u检验、方差分析。连续型变量:如数值 非参数检验:不需要假定总体分布形式,直接对数据的分布进行检验。由于不涉及总体分布的参数,故名「非参数」检验。比如,卡方检验。离散型变量:是和否、初级/中级/高级等
对比
:多项式等级设置这里一般用于有明显等级性划分的数据,比如前面提到的轻度/中度/重度病人这个设置,而这里用的是胎次具有等级关系,选择等级
即等于告诉软件,我想研究胎次这个因子随着等级递增与采食量之间是否有差异,一般选五次
,把1-5次全算一遍。正常来讲非等级分组可以不勾选这个选项。事后多重比较
,本次选用如下选项
,勾选描述性
和方差同质性检验
证实性研究:在实验设计阶段,根据研究目的或专业知识事先设计好需要比较的组别。如在实验设计时已设计好有一组对照组,n组实验组,最后拿到数据后,只关心实验组和对照组之间的两两比较,而实验组与实验组之间的比较是不在实验设计范围内的,无需比较。即在得到数据前,就已经设计好需要比较的组有哪些,只关心某几个组之间的均数是否有差异,这称之为“事前比较”(priori test)。 探索性研究:在实验设计阶段由于不明确那些组之间的比较是需要关注的,没办法事先设计好需要比较的组别,因此在拿到数据后,所有组的两两比较都需要进行,以进一步确定到底是那两组之间是存在差异的。如在实验设计时,并不知道正常状态、疲劳状态和睡眠状态之间的脑电信号有无差异,所以在采集到数据后,需要两两之间都进行比较才能得到结果,需要考虑所有的比较,这称之为“事后比较”(post hoc test)。(注意在实际操作中会存在这样的情况:在数据收集完成后,为减少工作量,研究者会挑出来一些看似差异比较大的组进行比较,而那些看起来似乎没有差别的组便不再比较,因此在实际操作中并没有做完所有的两两比较,而是只完成了其中几组看起来差异大的两两比较。但要注意的是,即使看似仅进行了其中几组两两比较,但这些“看起来差异大”的组别已经是在所有两两比较中,“通过经验”而不是“检验方法”所筛选出来的结果,所以实际上也还是考虑了所有的两两比较,依然属于“事后比较”。)
同样先附一张图
对数据进行正态检验后,不满足正态分布,选用非参检验(为方便演示下面用另一组数据):
分析
–非参数检验
–旧对话框
–K个独立样本
接上面 不满足正态分布(非参检验) ,来源自B站 SPSS-非参数检验6-Kruskal-Wallis H检验-多个独立样本秩和检验-事后两两比较 ,下面是文字整理
非参数检验
–独立样本
字段
这个模块,设置刚刚p值小于0.05的字段并添加组别直接运行模型查看器
中,选中检验字段(下图所示的黄底TP),在右边界面底下的查看
中选择成对比较
,则在右边出现了两两比较的信息,比如下图可以看出对于TP这个指标在1组和3组之间比较p值为0.016,表面这两组之间差异显著对本文内容进行总结形成思维导图如下(仅针对本文自用流程,更全面细致可参考正文中引用的【学习笔记】组间差异比较及相关问题总结一图),因本人非统计学专业出生,但最近有借此工具的需求所以慢慢摸索,有问题和建议欢迎指出。
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/179208.html原文链接:https://javaforall.cn
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2025 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号:粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287
Copyright © 2013 - 2025 Tencent Cloud.
All Rights Reserved. 腾讯云 版权所有