前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >点云匹配介绍与ICP算法

点云匹配介绍与ICP算法

作者头像
小白学视觉
发布于 2022-09-28 02:54:23
发布于 2022-09-28 02:54:23
2.6K0
举报

点云匹配

 图像配准目的在于比较或融合。针对同一对象在不同条件下获取的图像,因为激光扫描光束受物体遮挡的原因,不可能通过一次扫描完成对整个物体的三维点云的获取。因此需要从不同的位置和角度对物体进行扫描。三维匹配的目的就是把相邻扫描的点云数据拼接在一起。三维匹配重点关注匹配算法,常用的算法有最近点迭代算法 ICP和各种全局匹配算法。   ICP(Iterative Closest Point迭代最近点)算法是一种点集对点集配准方法。如下图所示,PR(红色点云)和RB(蓝色点云)是两个点集,该算法就是计算怎么把PB平移旋转,使PB和PR尽量重叠。

ICP算法基本思想:

三维点云匹配问题的目的是找到P和Q变化的矩阵R和T,对于 ,,利用最小二乘法求解最优解使:

最小时的R和T。

先对平移向量T进行初始的估算,具体方法是分别得到点集P和Q的中心:

在计算转换之前,从两个点集中的每个点减去相应的质心。

则上述最优化目标函数可以转化为:

最优化问题分解为:

目标函数E(R,t)的优化是ICP算法的最后一个阶段。在求得目标函数后,采用什么样的方法来使其收敛到最小,也是一个比较重要的问题。求解方法有基于奇异值分解的方法、四元数方法等。

ICP算法优点:

可以获得非常精确的配准效果 不必对处理的点集进行分割和特征提取 在较好的初值情况下,可以得到很好的算法收敛性 ICP算法的不足之处: 在搜索对应点的过程中,计算量非常大,这是传统ICP算法的瓶颈 标准ICP算法中寻找对应点时,认为欧氏距离最近的点就是对应点。这种假设有不合理之处,会产生一定数量的错误对应点

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-06-14,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 小白学视觉 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档