前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >CNN基础 & CV基本应用

CNN基础 & CV基本应用

作者头像
Sarlren
发布2022-10-28 11:29:30
3520
发布2022-10-28 11:29:30
举报
文章被收录于专栏:Sarlren的笔记Sarlren的笔记

卷积的概念不多叙述。

其中卷积维度相关的notation见下图:

_QM_J8A_Z__87_0ZLS5XNSP.png
_QM_J8A_Z__87_0ZLS5XNSP.png

LeNet

LeNet是用于对28*28的灰度图片分类的网络。其架构简化为下图:

O_KC_8XG_2F67F6KQ69QN.png
O_KC_8XG_2F67F6KQ69QN.png

对这一架构复现的代码如下:(隐去了引入数据集这一步)

代码语言:javascript
复制
import torch
from torch import nn
from torchvision.transforms import ToPILImage

net = nn.Sequential(  # 简单的写出网络
    nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Flatten(),
    nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
    nn.Linear(120, 84), nn.Sigmoid(),
    nn.Linear(84, 10))

X = torch.randn([1, 1, 28, 28], dtype=torch.float32)  # 用这四行代码试验各层的大小对不对
for layer in net:
    X = layer(X)
    print(layer, X.shape)

def train(dataLoader, testLoader, trainModel):  # 这里trainModel就传入上面定义的net
    net = trainModel
    optimizer = torch.optim.SGD(net.parameters(), lr=0.9)  # 声明梯度下降的方式为adam
    criterion = nn.CrossEntropyLoss()  # 定义交叉熵函数作为损失函数
    
    def init_weights(m):  # 初始化参数,极其重要,且极大加快了训练速度
        if type(m) == nn.Linear or type(m) == nn.Conv2d:
            nn.init.xavier_uniform_(m.weight)
    net.apply(init_weights)
    
    for epoch in range(10):  # 跑10个epoch(一个epoch就是对样本集所有样本的遍历)
        runningLoss = 0.0  # 初始化loss
        correct = 0  # 训练集的正确计数
        testCorrect = 0  # 测试集的正确计数
        for i, data in enumerate(dataLoader, 0):  # 枚举loader,写法固定为index,data
            inputs, labels = data  # data中就是我们刚才定义的__getitem__的顺序
            optimizer.zero_grad()  # 初始化梯度,必须要有
            outputs = net(inputs)  # 把data中的样本放入net而不放入标签,得到outputs输出

            pred = torch.max(outputs, 1)[1]
            correct += (pred == labels).sum().item() # 判断是否正确分类,用来判断这个epoch的指标
             
            loss = criterion(outputs, labels)  # 根据outputs和原有的标签计算交叉熵
            loss.backward()  # 反向传播计算更新参数,必须要有
            optimizer.step()  # 更新参数
            runningLoss += float(loss.data)  # 把一个epoch中的loss更新

        for testData, labels in testLoader:  # 跑完一个epoch之后在test集上检验一下
            outputs = net(testData)
            pred = torch.max(outputs, 1)[1]
            testCorrect += (pred == labels).sum().item() # 判断是否正确分类,用来判断这个epoch的指标
            
        print(f'epoch{epoch}:', runningLoss, f'trainning accuracy:{correct/len(dataLoader.dataset)}', f'test acc:{testCorrect/len(testLoader.dataset)}')#每一个epoch都打印一次loss
    print('finish!')

AlexNet进行迁移学习

其架构见下图,其中论文中描绘的不很清楚,也有部分出入。

4Q_CPZC4__V5V_S5_Z0LE4F.png
4Q_CPZC4__V5V_S5_Z0LE4F.png

以AlexNet为例,实现迁移学习: 代码块1:导入torch的alexnet:

代码语言:javascript
复制
import torch
model = torch.hub.load('pytorch/vision:v0.10.0', 'alexnet', pretrained=True)
model.eval()

代码块2:载入数据集(狗种类数据集)和数据集处理

代码语言:javascript
复制
from PIL import Image
import torch.nn as nn
import torch.optim as optim
from os import listdir
import os
from torchvision import transforms
import pandas as pd
from sklearn.model_selection import train_test_split

class DogDataset(torch.utils.data.Dataset):
    def __init__(self, img_paths, img_labels, size_of_images):
        self.img_paths = img_paths
        self.img_labels = img_labels
        self.size_of_images = size_of_images

    def __len__(self):
        return len(self.img_paths)

    def __getitem__(self, index):
        PIL_IMAGE = Image.open(self.img_paths[index]).resize(self.size_of_images)  # 图片改变大小为224 224 3,这是alexnet的大小
        TENSOR_IMAGE = transforms.ToTensor()(PIL_IMAGE)  # 图像转化为张量
        label = self.img_labels[index]
        return TENSOR_IMAGE, label
    
train_paths = []  # 训练集图片的路径
test_paths = []
labels = []  # 标签数组


# normalize = transforms.Normalize(  # 图像转化为张量如要指定normalize的标准差和均值,就用这个transform代替transforms.ToTensor()
#    mean=[0.485, 0.456, 0.406],
#    std=[0.229, 0.224, 0.225]
# )
# transform = transforms.Compose([transforms.ToTensor(), normalize])

train_paths_lir = r'D:\deepLearning\dog-breed-identification\train'  # 指定读取路径
for path in listdir(train_paths_lir):
    train_paths.append(os.path.join(train_paths_lir, path))

labels_data = pd.read_csv(r'D:\deepLearning\dog-breed-identification\labels.csv')  # 用panda去读数据集的csv
labels_data = pd.DataFrame(labels_data)

# 把字符标签从0-119编号,因为数据集共120种类
size_mapping = {}
value = 0
size_mapping = dict(labels_data['breed'].value_counts())
for key in size_mapping:
    size_mapping[key] = value
    value += 1
labels = labels_data['breed'].map(size_mapping)
labels = list(labels)
X_train, X_test, y_train, y_test = train_test_split(train_paths, labels, test_size=0.2)  # 划分train和test数据集
train_set = DogDataset(X_train, y_train, (224, 224))  
test_set = DogDataset(X_test, y_test, (224, 224))
# 指定batch_size
train_loader = torch.utils.data.DataLoader(train_set, batch_size=64)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=64)

代码块3:指定训练过程、冻结参数和新建自己的分类层

代码语言:javascript
复制
model.classifier[6] = nn.Linear(in_features=4096, out_features=120)  # 在AlexNet在这个位置修改成我们想要的分类120种狗狗
# 对于模型的每个权重,固定参数
for param in model.parameters():
    param.requires_grad = False
# 不固定最后一层
for param in model.classifier[6].parameters():
    param.requires_grad = True

def train(dataLoader, trainModel):  # 这里trainModel就传入
    net = trainModel
    optimizer = optim.Adam(net.parameters(), lr=0.001)  # 声明梯度下降的方式为adam
    criterion = nn.CrossEntropyLoss()  # 定义交叉熵函数作为损失函数
    for epoch in range(10):  # 跑10个epoch(一个epoch就是对样本集所有样本的遍历)
        runningLoss = 0.0  # 初始化loss
        correct = 0
        for i, data in enumerate(dataLoader, 0):  # 枚举loader,写法固定为index,data
            inputs, labels = data  # data中就是我们刚才定义的__getitem__的顺序
            optimizer.zero_grad()  # 初始化梯度,必须要有
            outputs = net(inputs)  # 把data中的样本放入net而不放入标签,得到outputs输出
            outputs = nn.Softmax(dim=1)(outputs)

            pred = torch.max(outputs, 1)[1]
            correct += (pred == labels).sum().item() # 判断是否正确分类,用来判断这个epoch的指标
             
            loss = criterion(outputs, labels)  # 根据outputs和原有的标签计算交叉熵
            loss.backward()  # 反向传播计算更新参数,必须要有
            optimizer.step()  # 更新参数
            runningLoss += float(loss.data)  # 把一个epoch中的loss更新
            print(i)
            
        print(f'epoch{epoch}:', runningLoss, f'trainning accuracy:{correct/10222}')#每一个epoch都打印一次loss,10222是样本集大小
    print('finish!')

AlexNet复现

直接上代码,kaiming初始化真的猛。与LeNet相比,这里的主要变化是使用更小的学习速率训练,这是因为网络更深更广、图像分辨率更高,训练卷积神经网络就更昂贵。

代码语言:javascript
复制
import torch
from torch import nn
import torchvision

net = nn.Sequential(  # 声明网络结构
    nn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),
    nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),
    nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    nn.Flatten(),
    nn.Linear(9216, 4096), nn.ReLU(),
    nn.Dropout(p=0.5),
    nn.Linear(4096, 4096), nn.ReLU(),
    nn.Dropout(p=0.5),
    nn.Linear(4096, 10))

dataset = torchvision.datasets.FashionMNIST('./fashionMNIST', download=True)  # 用torch官方方式下载数据集
transform = torchvision.transforms.Compose([  # 图像转张量用的函数
    torchvision.transforms.ToTensor()]) 

class newDataset(torch.utils.data.Dataset):  # 将数据集处理成能被用于学习的样子
    def __init__(self, data, label):
        self.data = data
        self.label = label

    def __len__(self):
        return len(self.data)

    def __getitem__(self, index):
        img = transform(ToPILImage()(self.data[index]).resize((227, 227)))
        return img, self.label[index]
# 只取前5000张,不然数据量太大了(泪目)
trainLoader = torch.utils.data.DataLoader(newDataset(dataset.train_data[:5000], dataset.train_labels[:5000]), batch_size=128)
testLoader = torch.utils.data.DataLoader(newDataset(dataset.test_data[:100], dataset.test_labels[:100]), batch_size=128)

def train(dataLoader, testLoader, trainModel):
    net = trainModel
    optimizer = torch.optim.SGD(net.parameters(), lr=0.01) 
    criterion = nn.CrossEntropyLoss()  # 定义交叉熵函数作为损失函数
    
    def init_weights(m):  # 初始化参数,极其重要,且极大加快了训练速度
        if type(m) == nn.Linear or type(m) == nn.Conv2d:
            nn.init.kaiming_uniform_(m.weight)  # kaiming初始化 过于厉害
    net.apply(init_weights)
    
    for epoch in range(10):  # 跑10个epoch(一个epoch就是对样本集所有样本的遍历)
        runningLoss = 0.0  # 初始化loss
        correct = 0  # 训练集的正确计数
        testCorrect = 0  # 测试集的正确计数
        for i, data in enumerate(dataLoader, 0):  # 枚举loader,写法固定为index,data
            inputs, labels = data  # data中就是我们刚才定义的__getitem__的顺序
            optimizer.zero_grad()  # 初始化梯度,必须要有
            outputs = net(inputs)  # 把data中的样本放入net而不放入标签,得到outputs输出

            pred = torch.max(outputs, 1)[1]
            correct += (pred == labels).sum().item() # 判断是否正确分类,用来判断这个epoch的指标
             
            loss = criterion(outputs, labels)  # 根据outputs和原有的标签计算交叉熵
            loss.backward()  # 反向传播计算更新参数,必须要有
            optimizer.step()  # 更新参数
            runningLoss += float(loss.data)  # 把一个epoch中的loss更新
            print(f'now batch {i}')

        for testData, labels in testLoader:  # 跑完一个epoch之后在test集上检验一下
            outputs = net(testData)
            pred = torch.max(outputs, 1)[1]
            testCorrect += (pred == labels).sum().item() # 判断是否正确分类,用来判断这个epoch的指标
            
        print(f'epoch{epoch}:', runningLoss, f'trainning accuracy:{correct/len(dataLoader.dataset)}', f'test acc:{testCorrect/len(testLoader.dataset)}')#每一个epoch都打印一次loss
    print('finish!')

VGG

VGG将conv-activate-poolling的模式封装起来,超参数为convNum。而且VGG论文中提及,深层且窄的卷积(即 3×3 )更有效。 这里的train和dataset代码和上一个相同,只给出网络架构的实现。

代码语言:javascript
复制
def vggBlock(convNum, inChannel, outChannel):  # 定义vgg里面的一块
    blockStruc = []
    for _ in range(convNum):
        blockStruc.append(nn.Conv2d(in_channels=inChannel, out_channels=outChannel, padding=1, kernel_size=3))
        blockStruc.append(nn.ReLU())
        inChannel = outChannel
    blockStruc.append(nn.MaxPool2d(kernel_size=2, stride=2))
    return nn.Sequential(*blockStruc)  # 星号表示把列表拆成元素

blockSet = ((1, 16), (1, 32), (2, 64), (2, 128), (2, 128))  # 为了减少计算量,这里整除4

def vggnet(blockSet):
    netStruc = []
    inChannel = 1
    for convNum, outChannel in blockSet:
        netStruc.append(vggBlock(convNum, inChannel, outChannel))
        inChannel = outChannel
        
    return nn.Sequential(*netStruc, 
                         nn.Flatten(), 
                         nn.Linear(in_features=outChannel*7*7, out_features=4096),
                         nn.ReLU(), 
                         nn.Dropout(0.5),
                         nn.Linear(4096, 4096),
                         nn.ReLU(),
                         nn.Dropout(0.5),
                         nn.Linear(4096, 10)
                        )

net = vggnet(blockSet)

NiN

NiN给出的结论是,如果后续用全连接层进行学习,有可能完全放弃表征的空间结构。NiN使用了1*1的卷积,充当逐像素的全连接层,具体类似VGG的块,不过VGG的块是conv-activate-poolling,NiN是Conv-1*1Conv-1*1Conv-Pool(激活在每个Conv后都有,这里不写出)。1*1有时称为bottleneck层,这可以减少计算量。 NiN中最后有一个AdaptiveAvgPool2d,比如说一个5channel的28 * 28图像,经过这个之后就是5 * 1 * 1。这免去了全连接层的大量参数,而全连接层的大量参数有可能减慢计算速度和造成过拟合。不过AdaptiveAvgPool2d有可能导致收敛速度减慢。 NiN的设计事实上很多部分来自AlexNet。结构如下:

7O7XSPBA_HIAMW_ZCRRKD.png
7O7XSPBA_HIAMW_ZCRRKD.png

很遗憾,在小批量的数据上NiN的收敛速度的确很慢,我在取5000张fashion_mnist数据集的训练中收敛极慢,没有复现成功。其网络架构为:

代码语言:javascript
复制
def ninBlock(inChannel, outChannel, kernel_size, padding, stride):
    return nn.Sequential(nn.Conv2d(in_channels=inChannel, out_channels=outChannel, kernel_size=kernel_size, padding=padding, stride=stride),
                         nn.ReLU(),
                         nn.Conv2d(in_channels=outChannel, out_channels=outChannel, kernel_size=1),  # 1*1 conv
                         nn.ReLU(),
                         nn.Conv2d(in_channels=outChannel, out_channels=outChannel, kernel_size=1),  # 1*1 conv
                         nn.ReLU()
                        )

net = nn.Sequential(ninBlock(1, 96, 11, 0, 4),
                    nn.MaxPool2d(kernel_size=3, stride=2),
                    ninBlock(96, 256, 5, 2, 1),
                    nn.MaxPool2d(kernel_size=3, stride=2),
                    ninBlock(256, 384, 3, 1, 1),
                    nn.MaxPool2d(kernel_size=3, stride=2),
                    nn.Dropout(0.5),
                    ninBlock(384, 10, 3, 1, 1),
                    nn.AdaptiveAvgPool2d((1, 1)),  # !important
                    nn.Flatten(),
                   )

GoogleNet

GoogleNet论文指出,有时候使用不同大小的卷积核是有利的。GoogleNet应用对一层信息的多次conv,类似不同大小的滤波器可以提取到不同的信息,最后拼起来作为输出。一个模块如下:

4OPWR7_JJURVFWTA__2_E07.png
4OPWR7_JJURVFWTA__2_E07.png

而整个网络架构如下:

XFJ4M0XIEE7T_93W_M1JAVF.png
XFJ4M0XIEE7T_93W_M1JAVF.png

这里给出简化过的GoogleNet实现。

代码语言:javascript
复制
class Inception(nn.Module):
    # c1--c4是每条路径的输出通道数
    def __init__(self, in_channels, c1, c2, c3, c4, **kwargs):
        super(Inception, self).__init__(**kwargs)
        # 线路1,单1x1卷积层
        self.p1_1 = nn.Conv2d(in_channels, c1, kernel_size=1)
        # 线路2,1x1卷积层后接3x3卷积层
        self.p2_1 = nn.Conv2d(in_channels, c2[0], kernel_size=1)
        self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)
        # 线路3,1x1卷积层后接5x5卷积层
        self.p3_1 = nn.Conv2d(in_channels, c3[0], kernel_size=1)
        self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)
        # 线路4,3x3最大汇聚层后接1x1卷积层
        self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
        self.p4_2 = nn.Conv2d(in_channels, c4, kernel_size=1)

    def forward(self, x):
        p1 = F.relu(self.p1_1(x))
        p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))
        p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
        p4 = F.relu(self.p4_2(self.p4_1(x)))
        # 在通道维度上连结输出
        return torch.cat((p1, p2, p3, p4), dim=1)

b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
                   nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))  # 第一块
b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),
                   nn.ReLU(),
                   nn.Conv2d(64, 192, kernel_size=3, padding=1),
                   nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))  # 第二块
b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),
                   Inception(256, 128, (128, 192), (32, 96), 64),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))  # 第三块
b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),
                   Inception(512, 160, (112, 224), (24, 64), 64),
                   Inception(512, 128, (128, 256), (24, 64), 64),
                   Inception(512, 112, (144, 288), (32, 64), 64),
                   Inception(528, 256, (160, 320), (32, 128), 128),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))  # 第四块
b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),
                   Inception(832, 384, (192, 384), (48, 128), 128),  # 第五块
                   nn.AdaptiveAvgPool2d((1,1)),
                   nn.Flatten())

net = nn.Sequential(b1, b2, b3, b4, b5, nn.Linear(1024, 10))

ResNet

ResNet直觉上把要拟合的f(x)变换成f(x)-x,这在一定程度上更好实现,如下:

_4LZUC6_FC_1E_3PL52__N.png
_4LZUC6_FC_1E_3PL52__N.png

因为ResNet块中,有的时候想要在conv指定大小的变化,如果直接加到后面去维度是不匹配的。所以引入另一种块,即使用1*1conv变化维度,使其可加。

5B4_TS_386_L908CL30MVUX.png
5B4_TS_386_L908CL30MVUX.png

那么ResNet的总架构由这些块构成,如下:

Z_DF18W_H7HUJXUDB_1_4.png
Z_DF18W_H7HUJXUDB_1_4.png

实现代码如下:

代码语言:javascript
复制
class Residual(nn.Module):  # 定义块中要用到的元素
    def __init__(self, input_channels, num_channels,
                 use_1x1conv=False, strides=1):
        super().__init__()
        self.conv1 = nn.Conv2d(input_channels, num_channels,
                               kernel_size=3, padding=1, stride=strides)  # 块中的第一个conv,变化channel和大小(因为stride)
        self.conv2 = nn.Conv2d(num_channels, num_channels,
                               kernel_size=3, padding=1)  # 第二个conv,same conv
        if use_1x1conv:
            self.conv3 = nn.Conv2d(input_channels, num_channels,  # 引入1*1的conv
                                   kernel_size=1, stride=strides)
        else:
            self.conv3 = None
        self.bn1 = nn.BatchNorm2d(num_channels)  # 指定BN
        self.bn2 = nn.BatchNorm2d(num_channels)

    def forward(self, X):
        Y = F.relu(self.bn1(self.conv1(X)))
        Y = self.bn2(self.conv2(Y))
        if self.conv3:
            X = self.conv3(X)
        Y += X
        return F.relu(Y)

def resnet_block(input_channels, num_channels, num_residuals,
            first_block=False):
    blk = []
    for i in range(num_residuals):
        if i == 0 and not first_block:
            blk.append(Residual(input_channels, num_channels,  # 除了第一个block,剩下的block的第一个conv都在减小尺寸
                                use_1x1conv=True, strides=2))
        else:
            blk.append(Residual(num_channels, num_channels))
    return blk

b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
                   nn.BatchNorm2d(64), nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))
net = nn.Sequential(b1, b2, b3, b4, b5,
                    nn.AdaptiveAvgPool2d((1,1)),  # 最后也有这个全局平均
                    nn.Flatten(), nn.Linear(512, 10))

DenseNet

DenseNet在ResNet的基础上对每个块之间都进行了连接。具体表现为,当经过一个DenseNet块之后,处理的输出会append到输入矩阵中,进行下一个处理。但这样会带来问题,就是输出越来越大。为此,使用过渡层,即1*1conv后接一个AvgPool,对输出规模减小。

此外,DenseNet使用了更新的块顺序。即BN-activate-conv。代码如下:

代码语言:javascript
复制
def conv_block(input_channels, num_channels):  # 定义基础conv,下面的DenseBlock要用到
    return nn.Sequential(
        nn.BatchNorm2d(input_channels), 
        nn.ReLU(),
        nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1))  # conv这里使用3*3 same

class DenseBlock(nn.Module):
    def __init__(self, num_convs, input_channels, num_channels):
        super(DenseBlock, self).__init__()
        layer = []
        for i in range(num_convs):
            layer.append(conv_block(
                num_channels * i + input_channels, num_channels))  # 这里有个加法是因为每次conv完会增加这些outputChannel,见下面forward
        self.net = nn.Sequential(*layer)

    def forward(self, X):
        for blk in self.net:
            Y = blk(X)
            # 连接通道维度上每个块的输入和输出,从而维度上按顺序增大是越来越往后的卷积层的信息
            X = torch.cat((X, Y), dim=1)
        return X
    
def transition_block(input_channels, num_channels):  # 定义过渡层
    return nn.Sequential(
        nn.BatchNorm2d(input_channels), nn.ReLU(),
        nn.Conv2d(input_channels, num_channels, kernel_size=1),
        nn.AvgPool2d(kernel_size=2, stride=2))  # 过渡层由BN-conv-avgpool构成,不含有activate,也不是maxPool

b1 = nn.Sequential(  # 网络第一层
    nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
    nn.BatchNorm2d(64), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
# num_channels为当前的通道数, 每两个conv之间增长32个channel,而一个block里面设定为4个conv层,经过一个block就增长128channel
num_channels, growth_rate = 64, 32
num_convs_in_dense_blocks = [4, 4, 4, 4]
blks = []
for i, num_convs in enumerate(num_convs_in_dense_blocks):
    blks.append(DenseBlock(num_convs, num_channels, growth_rate))  # 网络增加dense块
    # 适配上一个稠密块的输出通道数
    num_channels += num_convs * growth_rate
    # 在稠密块之间添加一个转换层,使通道数量减半
    if i != len(num_convs_in_dense_blocks) - 1:
        blks.append(transition_block(num_channels, num_channels // 2))
        num_channels = num_channels // 2
        
net = nn.Sequential(
    b1, *blks,
    nn.BatchNorm2d(num_channels), nn.ReLU(),  # 网络最后总通过BN、全局平均池化和FC
    nn.AdaptiveMaxPool2d((1, 1)),
    nn.Flatten(),
    nn.Linear(num_channels, 10))

YOLO复现

YOLO是物体检测的高效实现。给定一张图片,我们可以通过YOLO检测出多个目标并给出目标大小。其具体实现脉络如下: 输入图片->图片通过CNN得到一个特征张量->从张量中得到特别多的目标框->去掉其中概率太小的框->选定最大概率的框并去掉与其交并比太大的框->得到结果

寄了,没做出来,本贴终结。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022-01-26,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • LeNet
  • AlexNet进行迁移学习
  • AlexNet复现
  • VGG
  • NiN
  • GoogleNet
  • ResNet
  • DenseNet
  • YOLO复现
相关产品与服务
图像识别
腾讯云图像识别基于深度学习等人工智能技术,提供车辆,物体及场景等检测和识别服务, 已上线产品子功能包含车辆识别,商品识别,宠物识别,文件封识别等,更多功能接口敬请期待。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档