点个关注👆跟腾讯工程师学技术


导语 | 每个C++程序员仿佛都是人形编译器,不止要看懂代码表面的逻辑,甚至要知道每行代码对应的汇编指令。优化代码也成了C++工程师日常必备,正所谓“一杯茶,一包烟,一段代码,优化一天”。在经历过无数个性能优化的日夜后,笔者也总结了几个中过招的性能陷阱,与你分享~
本文介绍的性能陷阱主要分为两大类:“有成本抽象”和“与编译器作对”。前者是指在使用C++的功能/库时需要注意的隐形成本,后者则是一些C++新手可能会写出不利于编译器优化的代码。另外本文的顺序是由基础到进阶,读者可以根据需要直接跳到自己想看的部分。

C++“信徒”们常常鼓吹C++的“零成本抽象(Zero Cost Abstraction)”。然而对于“零成本抽象”这个概念存在很多误解。比如有的新手会认为:“使用C++的任何特性都没有成本”。那显然是大错特错的,比如使用模版就会导致编译时间变慢的编译期成本,而且我花了21天时间精通C++的时间成本也是成本啊(狗头)。有些经验的C++程序员会解释为”使用C++的任何特性都没有运行时成本“,这也是对C++最常见的误解。C++的创始人Bjarne Stroustrup是这样解释“零成本抽象”的:
简单来说,就是C++不会背着你偷偷干坏事(比如垃圾回收),而你指定C++干的活,C++会尽量在编译期做,保证在运行期只会做“最少”的工作。连小学生都应该知道,“最少”并不等于“零”,所以“零成本抽象”其实是一种谎言,Google的C++负责人Chandler Carruth就曾经在CppCon 2019说过:C++根本不存在”零成本抽象“。
(链接:https://www.youtube.com/watch?v=rHIkrotSwcc)
显然,C++的很多特性是有性能成本的,而且,这些成本往往出现在你“没有写”的代码里,即C++帮你添加的隐形代码。作为C++工程师,我们就必须了解每个特性会带来的性能损耗,在做代码设计时尽量选择损耗小的特性。
而下文介绍的很多坑点,C++语言服务器clangd可以帮你实时检测出来并自动修复。
老生常谈的性能损耗,这里只介绍一下虚函数调用带来的成本:
然而在实际生产环境中,可能很多的运行时多态是无法避免的,毕竟这是OOP的基础特性,因此对于虚函数我们也只能了解背后的成本而已。某些情况下我们可以使用编译期多态来替代虚函数,比如CRTP(Curiously Recurring Template Pattern)、Tempated Visitor Pattern、Policy Based Design等等,我的下一篇文章《C++独有的设计模式》中会介绍这些技巧,敬请期待。
也是一个老生常谈的性能损耗,这里主要介绍几个容易被疏忽的场景:
class C { public: C(A a, B b): a_(a), b_(b){} private: A a_; B b_;}
int main() { A a; B b; C c(a, b);}如果A、B是非平凡的类,会各被复制两次,在传入构造函数时一次,在构造时一次。C的构造函数应当改为:
C(A a, B b): a_(std::move(a)), b_(std::move(b)){}std::vector<std::string> vec;
for(std::string s: vec){
// ...
}这里每个string会被复制一次,改为for(const std::string& s: vec)即可。
A a;
auto f = [a]{};lambda函数在值捕获时会将被捕获的对象拷贝一次,可以根据需求考虑使用引用捕获auto f= [&a]{};或者用std::move捕获初始化auto f= [a = std::move(a)]{};(仅限C++14以后)。
std::unordered_map<int, std::string> map;
for(const std::pair<int, std::string>& p: map){
// ...
}这是一个很容易被忽视的坑点,这段代码用了const引用,但是因为类型错了,所以还是会发生拷贝,因为unordered_map element的类型是std::pair<const int, std::string>,所以在遍历时,推荐使用const auto&,对于map类型,也可以使用结构化绑定。
在C++代码中,我们几乎不会主动去调用类的析构函数,都是靠实例离开作用域后自动析构。而“隐形”的析构调用,也会导致我们的程序运行变慢:
我们的业务代码中有这样一种接口
int Process(const Req& req, Resp* resp) {
Context ctx = BuildContext(req); // 非常复杂的类型
int ret = Compute(ctx, req, resp); // 主要的业务逻辑
PrintTime();
return ret;
}
int Api(const Req& req, Resp* resp) {
int ret = Process(req, resp);
PrintTime();
}在日志中,Process函数内打印的时间和PrintTime打印的时间竟然差了20毫秒,而我们当时接口的总耗时也不过几十毫秒,我当时百思不得其解,还是靠我老板tomtang一语道破先机,原来是析构Context足足花了20ms。后面我们实现了Context的池化,直接将接口耗时降了20%。
class A {
public:
int i;
int j;
~A() {};
};
A get() {
return A{42};
}get函数对应的汇编代码是:
get(): # @get()
movq %rdi, %rax
movabsq $180388626473, %rcx # imm = 0x2A00000029
movq %rcx, (%rdi)
retq而如果我能把析构函数改一下:
class A {
public:
int i;
int j;
~A() = default; // 注意这里
};
A get() {
return A{41, 42};
}对应的汇编代码则变成了:
get(): # @get()
movabsq $180388626473, %rax # imm = 0x2A00000029
retq前者多了两次赋值,也多用了两个寄存器,原因是前者给类定义了一个自定义的析构函数(虽然啥也不干),会导致类为不可平凡析构类型(std::is_trivially_destructible)和不可平凡复制类型(std::is_trivially_copyable),根据C++的函数调用ABI规范,不能被直接放在返回的寄存器中(%rax),只能间接赋值。除此之外,不可平凡复制类型也不能作为编译器常量进行编译器运算。所以,如果你的类是平凡的(只有数值和数字,不涉及堆内存分配),千万不要随手加上析构函数!
关于非平凡析构类型造成的性能损耗,后文还会多次提到。
C++核心指南是这样推荐智能指针的用法的:
但是在实际代码中,用std::shared_ptr的场景大概就是以下几种:
实际上,std::shared_ptr的构造、复制和析构都是非常重的操作,因为涉及到原子操作,std::shared_ptr是要比裸指针和std::unique_ptr慢10%~20%的。即使用了std::shared_ptr也要使用std::move和引用等等,尽量避免拷贝。
std::shared_ptr还有个陷阱是一定要使用std::make_shared<T>()而不是std::shared_ptr<T>(new T)来构造,因为后者会分配两次内存,且原子计数和数据本身的内存是不挨着的,不利于cpu缓存。
std::function,顾名思义,可以封装任何可被调用的对象,包括常规函数、类的成员函数、有operator()定义的类、lambda函数等等,当我们需要存储函数时std::function非常好用,但是std::function是有成本的:
因此我们只应在必须时才使用std::function,比如需要存储一个不确定类型的函数。而在只需要多态调用的,完全可以用模版静态派发:
template <typename Func>
void Run(Func&& f){
f();
}std::any同理,用类型擦除的机制可以存储任何类型,但是也不推荐使用。
我在我的另一篇文章大肆吹捧了一波std::variant和std::optional,但是说实话,C++的实现还是有些性能开销的,这里以std::optional为例介绍:
std::async是一个很好用的异步执行抽象,但是在使用的时候可能一不小心,你的代码就变成了同步调用:
std::async的接口是:
template< class Function, class... Args >
std::future<std::invoke_result_t<std::decay_t<Function>, std::decay_t<Args>...>>
async( Function&& f, Args&&... args );
template< class Function, class... Args >
std::future<std::invoke_result_t<std::decay_t<Function>, std::decay_t<Args>...>>
async( std::launch policy, Function&& f, Args&&... args );其中std::launch类型包括两种:std::launch::async异步执行和std::launch::deferred懒惰执行,如果你使用第一种接口不指定policy,那么编译器可能会自己帮你选择懒惰执行,也就是在调用future.get()的时候才同步执行。
这是c++的std::async的一个大坑点,非常容易踩坑,比如这段代码:
void func1() {
// ...
}
void func2() {
// ...
}
int main() {
std::async([std::launch::async](https://en.cppreference.com/w/cpp/thread/launch), func1);
std::async([std::launch::async](https://en.cppreference.com/w/cpp/thread/launch), func2);
}在这段代码里,func1和func2其实是串行的!因为std::async会返回一个std::future,而这个std::future在析构时,会同步等待函数返回结果才析构结束。这也是上文“隐形的析构”的另外一种表现。正确的代码应当长这样:
更奇葩的是,只有std::async返回的std::future在析构时会同步等待,std::packaged_task,std::promise构造的std::future都不会同步等待,实在是让人无力吐槽。
关于std::async等等C++多线程工具,在我之后的文章《现代C++并发编程指南》会介绍,敬请期待。

众所周知,现代编译器是非常强大的。毛主席曾经说过:要团结一切可以团结的力量。面对如此强大的编译器,我们应该争取做编译器的朋友,而不是与编译器为敌。做编译器的朋友,就是要充分利用编译器的优化。而很多优化是有条件的,因此我们要争取写出优化友好的代码,把剩下的工作交给编译器,而不是自己胡搞蛮搞。
当一个函数的返回值是当前函数内的一个局部变量,且该局部变量的类型和返回值一致时,编译器会将该变量直接在函数的返回值接收处构造,不会发生拷贝和移动,比如:
#include <iostream>
struct Noisy {
Noisy() { std::cout << "constructed at " << this << '\n'; }
Noisy(const Noisy&) { std::cout << "copy-constructed\n"; }
Noisy(Noisy&&) { std::cout << "move-constructed\n"; }
~Noisy() { std::cout << "destructed at " << this << '\n'; }
};
Noisy f() {
Noisy v = Noisy();
return v;
}
void g(Noisy arg) { std::cout << "&arg = " << &arg << '\n'; }
int main() {
Noisy v = f();
g(f());
}这段代码中,函数f()满足NRVO的条件,所以Noisy既不会拷贝,也不会move,只会被构造和析构两次,程序的输出:
constructed at 0x7fff880300ae
constructed at 0x7fff880300af
&arg = 0x7fff880300af
destructed at 0x7fff880300af
destructed at 0x7fff880300ae自从C++11加入std::move语义之后,有些“自以为是”的程序员会到处添加move。在这些情况下,std::move是根本没用的:
而在某些情况下,move反而会导致负优化,比如阻碍了NRVO:
Noisy f() {
Noisy v = Noisy();
return std::move(v);
}还是上面的代码,只不过返回值被改成move走,结果就多了两次move构造和两次析构,反而得不偿失:
constructed at 0x7ffc54006cdf
move-constructed
destructed at 0x7ffc54006cdf
constructed at 0x7ffc54006cdf
move-constructed
destructed at 0x7ffc54006cdf
&arg = 0x7ffc54006d0f
destructed at 0x7ffc54006d0f
destructed at 0x7ffc54006d0e同样的,使用std::optional也可能会阻碍NRVO优化:
std::optional<Noisy> f() {
Noisy v = Noisy();
return v;
}因为返回值类型不对应,因此应当改为
std::optional<Noisy> f() {
std::optional<Noisy> v;
v = Noisy();
return v;
}为了性能牺牲了部分可读性。
尾递归优化是函数式语言常用的一种优化,如果某个函数的最后一步操作是调用自身,那么编译器完全可以不用调用的指令(call),而是用跳转(jmp)回当前函数的开头,省略了新开调用栈的开销。然而由于C++的各种隐形操作,尾递归优化不是那么好实现。我曾经在知乎上看到这样一个问题:zhihu.com/question/5523。题主的函数长这样:
unsigned btd_tail(std::string input, int v) {
if (input.empty()) {
return v;
} else {
v = v * 2 + (input.front() - '0');
return btd_tail(input.substr(1), v);
}
}直接return自身的调用,如果在函数式语言就是一个标准的尾递归,然而,实际执行的代码是:
unsigned btd_tail(std::string input, int v) {
if (input.empty()) {
return v;
} else {
v = v * 2 + (input.front() - '0');
auto temp = btd_tail(input.substr(1), v);
input.~string(); // 注意这里
return temp;
}
}由于在return前C++有隐形的析构操作,所以这段代码并不是尾递归。而需要析构的本质原因是std::string不是可平凡析构的对象,解决办法也很简单,换成std::string_view就好了
unsigned btd_tail(std::string_view input, int v) {
if (input.empty()) {
return v;
} else {
v = v * 2 + (input.front() - '0');
return btd_tail(input.substr(1), v);
}
}std::string_view是可平凡析构的,所以编译器根本不需要调用析构函数,这也是上文推荐尽量选用可平凡析构对象的另一个理由。关于std::string_view的介绍,可参考我的另一篇文章《C++17在业务代码中最好用的十个特性》。我的下一篇文章《C++函数式编程指南》会介绍C++函数式编程,敬请期待。
现代CPU大部分都支持一些向量化指令集如SSE、AVX等,向量化指的是SIMD操作,即一个指令,多条数据。在某些条件下,编译器会自动将循环优化为向量化操作:
举个例子,下方的代码非常的向量化不友好:
enum Type { kAdd, kMul };
int add(int a, int b) { return a + b; }
int mul(int a, int b) { return a * b; }
std::vector<int> func(std::vector<int> a, std::vector<int> b, Type t) {
std::vector<int> c(a.size());
for (int i = 0; i < a.size(); ++i) {
if (t == kAdd) {
c[i] = add(a[i], b[i]);
} else {
c[i] = mul(a[i], b[i]);
}
}
return c;
}既有if,又有函数调用,而如果我们通过模版if和内联函数,这两条都可以规避:
enum Type { kAdd, kMul };
inline __attribute__((always_inline)) int add(int a, int b) { return a + b; }
inline __attribute__((always_inline)) int mul(int a, int b) { return a * b; }
template <Type t>
std::vector<int> func(std::vector<int> a, std::vector<int> b) {
std::vector<int> c(a.size());
for (int i = 0; i < a.size(); ++i) {
if constexpr (t == kAdd) {
c[i] = add(a[i], b[i]);
} else {
c[i] = mul(a[i], b[i]);
}
}
return c;
}这样就变成了向量化友好的代码。我们团队正在基于apache arrow做一些向量化计算的工作,后续也会有文章分享关于向量化优化的详细介绍。
推荐阅读
AI绘画火了!一文看懂背后技术原理
CPU如何与内存交互?
揭秘go内存!
C++20协程初探!
点击下方空白 ▼ 查看明日开发者黄历

点赞|分享|在看,给小编加个🍗嘛