大家好,又见面了,我是你们的朋友全栈君。
1. 数据点的横坐标不是等间距时的曲线绘制
用实验数据作图时,会遇到数据点的横坐标不是等间距的情况,比如:
X:1,3,4,8,9,12,…
Y:10.2,10.5,11.4,11.8,10.9,10.2,…
如果只有一组实验数据,则按照普通的方法在Worksheet中分别输入X,Y的值,然后用“线+符号”的方式绘图即可。
但是,当有多组此种情况的数据需要绘制在一个图中时,例如:
X1:1,3,4,8,9,12,…
Y1:10.2,10.5,11.4,11.8,10.9,10.2,…
X2:2,5,9,10,11,13,…
Y2:13.2,13.5,14.4,13.8,13.9,13.2,…
这时如果将两组数据的X值放在一列里,则Y1和Y2会出现不连续的情况,绘出的曲线发生间断。
解决的办法是:
每组数据的X值都放在各自的X列中,绘出的每条曲线就都是连续的了。具体的操作如图1所示。
图1 改变数据列的坐标轴属性
2. 多图层下的绘图——图层的使用
1)两组数据的横坐标相差小,纵坐标相差大的情况
2)横坐标相差大,纵坐标相差小的情况
3)横坐标和纵坐标相差都大
图层的建立如图2所示
图2 新图层的建立过程
3. 移动坐标轴及在一个图中出现多个坐标轴
增加两个新图层的方法设置三个纵坐标,在想要移动的y坐标轴上点右键打开坐标轴对话框,然后选“title&format—axis”下拉框选“at position=”然后在下面的框里输入想要移动多远就可以了。
4. 如何输入σ,±这样的符号
添加文本,然后点击Ctrl+M,选择你所需的字符,插入就行了。
5. Origin中中文间距不一的问题
升级到7.5以上版本,问题解决
6. 添加误差棒
(1)计算标准偏差,将所有数据输入Excel, 分别计算每组数据的平均值
(2)将所有数据输入Excel,用公式“stdev”计算每组数据的标准偏差
(3)将X轴数据,平均值,标准偏差输入origin,然后选中标准偏差所在列–colomn–setas Y error , 然后选中所有数据–plot–specialline/symbol–Y error
注:在Origin中计算平均值和标准差的方法,右键单击选中需要统计的数据列,在弹出菜单中选择“statistics on column(s)/row(s)”即可得到平均值(Mean)和标准差(Sd)
7. 设置数据列的值
(1)用系统自带函数设置
单击鼠标右键选中需要设置新值的数据列,从弹出菜单中选择“set column values…”命令,在弹出的对话框中设置需要用到的函数和数据列(选择了函数和列后别忘了单击后面的add function 和add column),最后单击OK,新计算出的数据出现在先前选中的数据列中。
(2)怎么求非自然数为底的幂函数
Origin中的自然数的幂函数ex很容易,用EXP函数就可以了,但是其它幂函数没有,例如:将一列数据转变为以10为底,数列为幂指数,用10^col(A)就可以了。(^ [kArit]求幂指数符号)
8. 绘制函数
有的时候,我们有一个函数,想绘制出该函数的曲线,以了解它所反映的规律,比如曲线的形状、范围等。这时我们可以用图3所示的添加函数列表命令来实现(注意“图表”菜单只有在你建立了一个新图的时候才会出现,图3所示的新图是用没有数据的空表建立的)。
图3 添加函数图表命令
点击“添加函数图表”命令后会弹出图4所示的对话框,输入函数,如0.1*x^3+sin(x)。绘制出的曲线如图5所示。
图4 输入已有函数
图5 绘制出的函数曲线
9. 数据拟合
(1)线性拟合
用实验数据绘出散点图之后,在“分析”菜单中选择“线性拟合”命令即可。
(2)非线性拟合
1)用现有公式拟合
Origin中提供了能够满足绝大多数工程计算的公式。
2)自定义拟合
origin 中虽然提供了强大的拟合曲线库外,但在实际使用中,你可能会发觉在所提供的曲线库中没有你想要拟合的公式。这时你就可以使用用户自定义公式进行拟合。过程如下:
这样就完成了一次自定义曲线拟合。
提示:
R2(拟合优度或确定系数),0≤R≤1,越大表示拟合程度越好
χ2(残差平方和),越小表明拟合程度越好
误差棒用的是标准(偏)差:即真误差平方和的平均数(方差)的平方根,作为在一定条件下衡量测量精度的一种数值指标,也是一系列观测值离散情况的度量。
附:内置函数
abs : 绝对值
acos : x 的反余弦
angle(x,y) : 点(0,0)和点(x,y)的连线与 x 轴之间的夹角
asin : x 的反正弦
atan : x 的反正切
J0 : 零次贝塞耳函数
J1 : 一次贝塞耳函数
Jn(x,n) : n 次贝塞耳函数
beta(z,w): z > 0, w > 0 β函数
cos: x的余弦
cosh : 双曲余弦
erf : 正规误差积分
exp : 指数
ftable(x,m,n) : 自由度为 m,n 的 F 分布
gammaln : γ 函数的自然对数
incbeta(x,a,b) : 不完全的β函数
incf(x,m,n): m,n自由度上限为 x 的不完全 F 分布
incgamma(x,a) : 不完全 γ 函数
int : 被截的整数
inverf : 反误差函数
invf(x,m,n) : m 和 n自由度的反 F 分布
invprob : 正态分布的反概率密度函数
invt(x,n) : 自由度 n 的反 t 分布
ln : x 的自然对数
log : 10为底的 x 对数
mod(x,y) : 当整数 x 被整数 y 除时余数
nint : 到 x 最近的整数
prec(x,p) : x 到 p 的显著性
prob : 正态分布的概率密度
qcd2 : 质量控制 D2 因子
qcd3 : 质量控制 D3 因子
qcd4 : 质量控制 D4 因子
rmod(x,y) : 实数x除以实数y的余数
round(x,p) : x 环绕 p 的准确度
sin : x 的正弦
sinh : x 的双曲正弦
sqrt : x 的平方根
tan : x 的正切
tanh : x 的双曲正切
ttable(x,n) : 自由度为 n 的学生氏t分布
y0 : 第二类型零次贝塞耳函数
y1 : 第二类型一次贝塞耳函数
yn(x,n) : 第二类型 n 次贝塞耳函数
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/187639.html原文链接:https://javaforall.cn