Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >在银行担任数据分析师是种什么体验?| CDA持证人专访

在银行担任数据分析师是种什么体验?| CDA持证人专访

作者头像
CDA数据分析师
发布于 2022-11-17 07:18:50
发布于 2022-11-17 07:18:50
6010
举报
文章被收录于专栏:CDA数据分析师CDA数据分析师


CDA数据分析师 出品

主持人:王海龙 视频制作:焦亚丽

采访嘉宾:CDA持证人 郭畅

编辑:Mika

采访老师:

大家好,今天我们邀请到了郭畅来参加我们CDA持证人专访!郭畅可以和大家打个招呼!

嘉宾:

大家好,我叫郭畅,安徽大学毕业,目前就职于徽商银行总行大数据部,刚工作一年多,主要参与两项跨部门项目建设,项目中主要负责模型开发,数据分析,模型运营优化等工作。

点击下方视频,先睹为快:

http://mpvideo.qpic.cn/0bc3a4aneaaap4aan5tiarrvab6d2idqbuqa.f10002.mp4?dis_k=6cfb3562af0a16bc98b6e8ece496df83&dis_t=1668669475&vid=wxv_2654528846960246787&format_id=10002&support_redirect=0&mmversion=false

问题 1:

我看您已经是CDA二级持证人了,您平时工作或者项目能和考证内容结合起来吗?

//

嘉宾:

是的,可以的。

其实我是在读研期间考的CDA,因为研究方向是机器学习数据挖掘方面的,那段时间发现CDA二级建模分析师考试内容比较相符,加上有实操考试,就想边学习边考CDA可能更系统一点,也能检测自己学习情况。而后来在找工作的途中也发现这方面知识还是比较热门的,特别是在银行数字化转型的背景下。

现在是刚入职银行一年多,由于所在的岗位比较对口,之前学习的内容还是比较有用的,比如说评分卡模型、逻辑回归、随机森林、GBDT、XGBOOST算法等等在当前的互联网信贷上都常会用到。

而风控也一直是互联网信贷的工作重心,刚刚提到的机器学习算法也都是在做逾期客户以及“坏客户”预测上会使用到的,然而在“算法”、“模型”之前还有最重要的,也是我们在工作中最费时的数据预处理以及特征筛选的部分,工作中遇到的数据存在各种各样的问题,如何处理缺失、异常;如何进行数据清洗、编码?在特征构建以及筛选的过程中如何构建有效特征?如何进行特征筛选?这些在我考证期间都有接触到,并且和实际工作也都有所重合。

然而在工作的这一年中,也是仅仅通过书本无法学习的是在做模型设计、开发中的业务知识,毕竟模型是为业务赋能,会应用到具体的业务场景,所做的模型都需要结合不同的业务场景设计不同的指标,设计的指标也会根据业务场景、应用做筛选,具体问题具体分析。但是业务分析、数据获取、数据预处理、建模、模型评估以及应用等流程重合度还是比较高的。

问题 2:

平时用什么语言写模型呢?可以简单说说您的模型开发工作流程吗?

//

嘉宾:

在数据提取方面用的最多的还是 SQL 语言,因为银行数据大部分都在数据仓库里;建模、模型运营分析方面一般用 Python

我们进行模型开发时都是根据业务部门需求进行,所以需要先确定业务需求,明确了业务需求后,需要分析数据可用性、提好坏样本、特征构建、建模、评估等等。在实际工作中,我目前遇到的模型分为规则模型、机器学习模型以及两种相结合的模型。

在工作之前我也觉得规则模型比较简单,但是实际工作中就知道,针对特定场景、特定政策要求规则模型必不可少,针对规则模型,业务要求、监管及政策导向极其重要,如何量化指标、如何调优是及其重要的部分;而针对于机器学习模型,特征筛选、模型构建调优中,模型本身、算法却是重点之一。

问题 3:

模型优化是怎么操作的 ,是长期的工作吗或者是一定周期就要优化呢?

//

嘉宾:

模型优化其实应该是贯穿整个模型生命周期必不可少的环节,应该说是一个长期工作,但不能说是一定周期就一定要进行模型优化。

在我当前的工作中,模型优化有两个原因:

1、业务需要;

2、模型需要。

对于前者,是指针对不同的业务场景和产品需要,结合业务或者产品的变动需要进行的模型优化。

对于后者是指在模型运营分析的过程中发现的问题进行优化,举个例子,对于互联网信贷模型,准入端、模型端、授信端都有各自的模型或规则,如果某些规则、特征出现波动,针对波动出现的原因需要进行分析,如果确认是模型对当前的客群出现了偏差,则应该进行不同程度的调整。

所以,模型优化不是单独进行的,需要和业务需要以及日常模型监控相结合。

问题 4:

可以举一个模型优化的实际案例吗?

//

嘉宾:

那我就从我参与的两次模型优化入手简单说一下。

刚才也说到模型优化不是独立出来的过程,也是需要从好坏客户定义、样本提取、查看分布、优化调整、评估优化结果等方面进行的。

在实际的工作中,经常存在模型刚上线一段时间,坏样本不充足的情况,此时做模型优化,需要把精力放在如何获取坏客户上,我们常遇到的解决办法是找类似的场景去扩充坏样本,对于上线时间较长的其他场景的逾期客户在进行迁移率分析、进行客户分布重合度的验证后是否可以进行坏样本扩充。

在好坏样本定义和样本提取之后,需要查看我们样本在当前模型的表现,也就是在样本上通过变量取值回测模型规则、评分以及额度策略等等,针对好坏样本表现分布,结合前期调整要求,比如变量阈值、额度参数等等这种简单层面的,最后将调整后的结果和之前进行对比、评估,在评估阶段主要是从模型优化前后效果比对和风险分析方面,风险方面比如采用紧的变量调整方法,也就是控制坏客户的进入,可能造成的客户申请通过率低贷款放不出去,可能是业务无法接受的,如若采用松的变量调整方法,放进了大量客户而导致坏客户的进入以至于逾期率、不良率上升的风险,在实际的调整过程中需要和业务端共同协调来定,完成所有流程后撰写优化报告以及测试报告就算完成了一次简单的模型优化。

问题 5:

银行怎样把机器学习运用到智能风控上?

//

嘉宾:

其实,机器学习算法在银行的应用越来越广,分类、聚类、关联等都可能用到,也会用到神经网络、深度学习、图算法等。

从应用方向上看,主要分为四类,分别是客户管理、精准营销、智能风控和运营管理。在四类应用方向中,客户管理是基础,通过机器学习可以实现精细化客户管理,在此基础之上,可以对精准营销、智能风控等进行赋能。

我主要说一下智能风控方面的应用,一般银行对智能风控的应用体现在互联网信贷上,如何识别、预测“坏客户”是重中之重。一般分为三大关卡:准入端、模型端、授信端,针对不同关卡设置不同的规则、模型、策略。其中用到的机器学习模型主要体现在评分卡模型以及各种分类预测算法,传统的评分卡模型为了追求解释性主要采用逻辑回归,也就是一种复杂特征工程与一种简单模型结合的方法,然而现在为了增加预测精度更多结合一些先进算法来挖掘更多潜在风险,近几年,对团伙以及关联关系的挖掘也层出不穷,图算法也是比较热门的算法之一,我们项目中也在用,在与传统的算法比较中也有比较突出的效果。

总之,机器学习算法在银行数字化转型的背景下越来越普遍的应用在各个业务场景中,神经网络、深度学习的算法也不断的被引用,作为职场新人的我也有很多要学习,希望和大家一起学习进步。

结语

感谢郭畅今天为大家带来的分享,随着互联网时代信息技术的不断发展,大数据逐渐被大众熟悉和使用,并上升为国家战略,在各行各业都得到广泛应用。银行因为其行业特性,在大数据应用之中有着得天独厚的优势。

以大数据为驱动,探索公司业务新增长模式,深入推进业务模式转型,已成为商业银行的共识。

让我们下期再见!

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-11-07,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 CDA数据分析师 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
机器学习在金融风控的经验总结!
由于金融风控场景的特殊性,很多算法同学在刚进入这个领域容易“水土不服”,为了使机器学习项目(也包括图算法相关的应用)落地更加顺利,本文介绍下实践过程的一些经验和踩过的坑。
Sam Gor
2020/09/22
1.9K0
机器学习在金融风控的经验总结!
一文看懂风控模型所有
在当代,金融机构在风险管理的每个环节都尽可能地引入计量分析方法,依托大数据进行后台的分析回顾,不断的优化调整,使得金融机构在风险与收益的博弈过程中更快达到平衡,实现局部甚至更多空间的利润最大化。
全栈程序员站长
2022/09/06
7.3K0
一文看懂风控模型所有
机器学习在信用评分卡中的应用
互联网金融,特别是P2P信贷在过去几年可以说经历了大起大落的过山车。在经历了2016、2017年的高速发展后,随着整体经济环境遇冷、政策层面监管趋严,行业已进入洗牌周期。特别是随着18年7月P2P暴雷潮的出现,更是为行业前途蒙上一层迷雾。
SIGAI学习与实践平台
2018/11/14
2.8K1
机器学习在信用评分卡中的应用
概述:机器学习和大数据技术在信贷风控场景中的应用
来源:知乎本文约5400字,建议阅读10分钟本文简要概述在当前大数据和机器学习技术如何在信贷风控场景下的常见应用。 似乎一夜之间,所有的互联网公司在对外的宣传稿中都会提及自己使用机器学习和大数据技术,一时间成为了近几年来最炙手可热的名词,不谈机器学习、大数据似乎都不好意思说自己是做高新技术的了。 百度搜索指数:机器学习 百度搜索指数:大数据 上图来自最近7年来这两个词的百度搜索指数,可以看到从2013年开始一直在稳步攀升,在2017年的时候迎来了爆发式的增长,这些都与我们的感知类同。 机器学习与人
数据派THU
2022/03/04
6600
【案例】渤海银行——在线业务自动化信用审核
【案例】渤海银行——在线业务自动化信用审核
数据猿
2018/05/31
1.6K0
4步教你开发风控评分模型
作者简介 作者:郑旻圻 邹钰 刘巧莉 背景:数信互融-数据分析师 数信互融(IFRE):专注于互联网金融领域的风险量化、资产定价。基于互联网金融行业数据,结合互联网金融大数据,应用国际上专业化的分析手段,提供信用评估模型、决策引擎和资产证券化等服务,帮助互联网金融行业预测债权的风险溢价、实现资产定价以及解决互联网金融行业资产流动性问题。 “你的模型准么?” “你的模型真的有用么?” “你的模型对风控有价值么?” 在为P2P公司建立风控评分模型过程中,这是最常见的问题。为了回答这一问题,我们想先讨论下如何
机器学习AI算法工程
2018/03/13
4K0
4步教你开发风控评分模型
机器学习与大数据风控
一个普遍的看法是,机器学习等人工智能技术会最先在金融领域落地。金融行业是最早实现信息化的行业,有丰富的数据积累,且对于用技术提升效率有更多的需求。 现在也有越来越多的公司开始使用机器学习技术实现自动风险管理与放贷。但机器学习在风控中的作用究竟如何,有哪些关键技术,其优势与缺点又有哪些呢?本期硬创公开课,雷锋网邀请百融金服风险总监郑宏洲,来讲讲机器学习与大数据风控的那些事。 嘉宾介绍: 郑宏洲,百融金服风险总监。国内商业银行模型团队多年管理经验,专注于大数据机器学习、信贷风险策略、模型评分管理等风控领域。从事
陆勤_数据人网
2018/02/28
2K0
机器学习与大数据风控
一文搞定评分卡开发中——Y的确定(Vintage分析、滚动率分析等)
本文将从支付和信贷评分卡建立的角度,对比分析不同行业在建立评分卡时因变量Y确定的差异。
阿黎逸阳
2022/05/31
4.9K0
一文搞定评分卡开发中——Y的确定(Vintage分析、滚动率分析等)
信贷风控模型搭建及核心风控模式分类
一、当前风控模式现状 近年来,信用风险管理发展呈现出数据化、模型化、系统化、自动化和智能化的特点。传统的人工专家经验正逐步被模型与算法替代。 因此,科技较为领先的金融服务公司会选择采用模型方式完成对借款人的自动评估与审批。目前,对于信贷审核来说主要基于的风控模式为IPC、信贷工厂、大数据三种,每一种都有自己不同的侧重点。 二、最核心的风控模式分类 1.IPC模式 IPC模式起源于德国邮储银行,该模式重视实地调查和信息验证,主要通过对客户经理调查走访、信息交叉验证等方面。需要对客户经理进行至少2个月以上的专业技术培训,提升客户经理辨别虚假信息能力和编制财务报表的技能,从而防范信用风险。 IPC公司信贷技术的核心,是评估客户偿还贷款的能力。主要包括三个部分:一是考察借款人偿还贷款的能力,二是衡量借款人偿还贷款的意愿,三是银行内部操作风险的控制。每个部分,IPC都进行了针对性的设计。 这种模式主要运用于数据缺失、不具备财务管理环境、银行流水不完整,信用记录空白等的小微企业,其中,信贷员负责整个过程,从接受客户的申请到信用检查、现场信用、风险评估再到匹配贷款、付款催收和逾期付款。对信贷员的专业技能要求较高,信贷员对贷款全流程把关,一定程度上确保了项目的真实性。但又因为是以信贷员为核心,以信贷员的判断为依据,有一定的操作风险与道德风险。 2.信贷工厂模式 信贷工厂模式是新加坡淡马锡控股公司(Temasek Holdings)为解决小微企业信贷流程的弊端,推出了一种改善小微企业信贷流程的“信贷工厂”模式,“信贷工厂”意指银行像工厂标准化制造产品一样对信贷进行批量处理。 具体而言,就是银行对中小企业贷款的设计、申报、审批、发放、风控等业务按照“流水线”作业方式进行批量操作。在信贷工厂模式下,信贷审批发放首先要做到标准化,每个流程都有确定的人员分工,如客户经理、审批人员和贷后监督人员专业化分工。并且为了监控风险采用产业链调查方法,从不同角度对借贷企业进行交叉印证。 信贷工厂模式的特点是效率高,可以进行量化审核。过程之间环环相扣,对每个环节都有专人把控具体的把控。正因为这样,意味着需要消耗大量的人力成本,每个流程都需要对口的人员做支撑。 3.大数据模式 大数据风控模式是指通过对海量的、多样化的、实时的、有价值的数据进行采集、整理、分析和挖掘,并运用大数据技术重新设计征信评价模型算法,多维度刻画信用主体的“画像”,向信息使用者呈现信用主体的违约率和信用状况。 大数据模式是基于互联网的兴起,该模式利用互联网数据的连通性,对触及到的风险的数据进行筛选,大大减少了人工审核的时间成本,同时也保证了数据结果的真实性。 三、P2P公司个人信贷评分卡模型 我们先讨论下如何从实际业务出发,以怎样的开发流程才能建立一个有效、有用、有价值的模型,希望读后能给你一定的启发。
全栈程序员站长
2022/08/14
2.7K0
金融策略数据分析师:我是如何从萌新进化为职场老司机的
从我去年入职金融策略数据分析师到如今,已有半年时间了。通过这半年的工作锻炼,我已经从刚入职的啥也不懂的萌新,进化成了如今工作清单一大堆的职场老司机,这个转变的过程中我也积累了很多感想,在与大家分享一下。
CDA数据分析师
2019/06/18
6100
金融策略数据分析师:我是如何从萌新进化为职场老司机的
python评分卡代码_python爬虫书籍豆瓣评分
信用风险计量模型可以包括跟个人信用评级,企业信用评级和国家信用评级。人信用评级有一系列评级模型组成,常见是A卡(申请评分卡)、B卡(行为模型)、C卡(催收模型)和F卡(反欺诈模型)。 今天我们展示的是个人信用评级模型的开发过程,数据采用kaggle上知名的give me some credit数据集。
全栈程序员站长
2022/11/15
1.3K0
银行的新玩法,用数据分析重塑贷款策略!
随着经济全球化和技术革新的加速,银行业务正面临前所未有的挑战和变革。在这个数字化时代,银行业的传统运作模式受到挑战,特别是在零售贷款领域。这一领域的核心挑战在于如何在激烈的市场竞争中实现有效的营销策略,同时保持严格的风险控制。
数据猿
2024/01/15
3190
银行的新玩法,用数据分析重塑贷款策略!
关于互联网金融授信产品的风控建模
随着互联网渗透到生活中的各个角落,金融行业也似乎找到了与互联网的完美结合。互联网金融作为一个新的行业如今正在上升的势头上,因而也涌现了越来越多的P2P公司。但是作为一个互金公司来讲,风险永远是一个最重要的话题。那么如何利用机器学习以及大数据技术来降低风险呢?如何建立信用评分的模型呢?
Python数据科学
2018/09/14
3.2K0
关于互联网金融授信产品的风控建模
学习周报20200621 | 风控、模型、回顾
这周因为一些原因需要整理一些风控建模的知识点,顺便在这里整理一下,一起来回顾回顾。
Sam Gor
2020/06/24
1.9K0
学习周报20200621 | 风控、模型、回顾
金融风控评分卡建模全流程!
本文将带领读者一起进行完整的建模全流程,了解银行风控是如何做的。并提供kaggle代码。首先讲述评分卡的分类、优缺点。接下来,结合完整的可以马上运行的代码,中间穿插理论,来讲解评分卡的开发流程。最后,把方法论再梳理一次,让读者在了解全流程后,在概念上理解再加深。
Datawhale
2021/03/11
9.9K2
金融风控评分卡建模全流程!
风控建模整体流程
在信贷领域中建立风控模型是为了找出可能会逾期的客户,根据逾期的可能性和资金的松紧程度选择是否放贷。
阿黎逸阳
2020/09/08
2.1K0
干货 | 联通政企数据运营体系建设
我们将从以下几个方面为大家介绍我们的项目,首先第一部分是需求分析,然后是数据提取及处理,接着样本定义与分布、特征粗筛与模型选择、特征精筛与评分卡建模、TOAD评分卡构建及决策建议。
数据派THU
2023/08/08
3230
干货 | 联通政企数据运营体系建设
【案例】某银行信用卡中心——大数据反欺诈应用案例
数据猿导读 2003年以来我国经济的快速增长,国内信用消费环境的日趋成熟,我国信用卡市场近几年得到了爆炸性的大发展。根据中国银行业协会统计,信用卡欺诈损失排名前三类型为伪卡、虚假身份和互联网欺诈。 本
数据猿
2018/04/19
5.7K0
【案例】某银行信用卡中心——大数据反欺诈应用案例
统计思维如何帮助大数据应用从人工走向智能?(下)
欢迎各位同学回来,本文承接上周发表的文章:统计思维如何帮助大数据应用从人工走向智能?(上),感兴趣的同学可以去了解下。
数据森麟
2019/09/27
6510
统计思维如何帮助大数据应用从人工走向智能?(下)
风控中必做的数据分析
我的观点是风控和其他互联网业务都是互通的,本文介绍下风控中必做的数据分析,用以说明数据分析是一通百通的。
Python数据科学
2021/09/08
1.4K0
风控中必做的数据分析
相关推荐
机器学习在金融风控的经验总结!
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档