前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >极值点,驻点,拐点的关系_求驻点

极值点,驻点,拐点的关系_求驻点

作者头像
全栈程序员站长
发布2022-11-17 17:46:04
发布2022-11-17 17:46:04
1.6K0
举报
极值点(是自变量x的值)

极值点:一阶导数发生变号的点,对于导数不存在的点,分析其左导数和右导数的正负是否相同,相同则不是极值点;若不同则为极值点。极值点是该点的x坐标值,而极值是该点对应的y坐标值。

驻点(是一个点对(x,y))

驻点:只是单纯地符合f’(xo)=0的点,导数不存在的点不是驻点。

拐点(点对(x,y))

拐点:二阶导数发生变号的点,对于二阶导数不存在的点,分析其左二阶导数和右二阶导数的正负是否相同,相同则不是拐点;若不同则是拐点。

常用结论:

1.只要f’(xo)=0,那么该点就是驻点。

2.若f’(xo)=0,而f”(xo)≠0,该点一定是极值点。(简单地分析问什么?因为f’’(xo)≠0,那么f’(x)在xo点的左右一定具有变大或者变小的单调方向(f’’(x)在某种意义上,可以理解为f’(x)的变化趋势),所以f’(xo)=0就是f(x)导数变号的零点。)

3.若f’’(xo)=0,而f’’’(xo)≠0,该点一定是拐点。(对于这里的结论也是同理,f’’’(x)代表着f’’(x)的变化趋势–大小和方向,所以当f’’’(xo)≠0,说明f’’(x)在xo点附近具有向上或者向下的单调方向,而f’‘(xo)=0就是f’'(x)的导数变号的零点。)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。 发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/222983.html原文链接:https://javaforall.cn.

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022年10月29日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 极值点(是自变量x的值)
  • 驻点(是一个点对(x,y))
  • 拐点(点对(x,y))
  • 常用结论:
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档