前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >基于fpga的spi通信设计_协议的概念

基于fpga的spi通信设计_协议的概念

作者头像
全栈程序员站长
发布于 2022-11-19 05:43:12
发布于 2022-11-19 05:43:12
82200
代码可运行
举报
运行总次数:0
代码可运行

大家好,又见面了,我是你们的朋友全栈君。

一、SPI协议

1、SPI协议概括

SPI(Serial Peripheral Interface)——串行外围设备接口。是Motorola首先在其MC68HCXX系列处理器上定义的。SPI接口主要应用在EEPROM、FLASH、实时时钟,AD转换器以及数字信号处理器和数字信号解码器之间。SPI是一种高速,全双工,同步的通信总线,在芯片上只占用四根线(CS、MOSI、MISO、SCK),极大的节约了芯片的引脚。

2、SPI物理层

SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或者多个从设备。图1是一个主设备一个从设备的物理连接示意图。图中SCK是由主设备发送给从的时钟,该时钟决定了主设备发送数据的速率;MOSI是主设备发送给从设备的数据;MISO是从设备发送给主设备的数据;CS是片选信号,即只有片选信号为预先规定的使能信号时(高电平或者低电平)对此芯片的操作才有效。

图1 点对点通信

图2 一主多从通信

3、SPI协议层

SPI通信是四线串行通信,也就是说数据是一位一位传输的。这也即是SCK存在的意义,SCK提供通信所需的时钟脉冲,MOSI和MISO则基于此时钟进行数据传输。数据输出通过MOSI线,数据在时钟的上升沿或下降沿时改变,在紧接着的下降沿或者上升沿被读取。完成一位数据传输,输入也使用同样原理。这样,至少在8次时钟信号的改变(上升沿和下降沿为一次),就可以实现8位数据的传输。

需要注意的是,SCK信号线只由主设备控制,从设备不能控制信号线。同样,在一个基于SPI的设备中,至少要有一个主控设备。这样传输的特点:此传输方式有一个优点,与普通串行通信不同,普通的串行通信一次连续传送至少8位数据,而SPI允许数据一位一位的传送,甚至允许暂停,因为SCK时钟线由主控设备控制,当没有时钟跳变时,从设备不采集或传送数据。也就是说,主设备通过对SCK时钟线的控制可以完成对通信的控制。SPI协议还可以实现数据的交换:因为SPI的数据输入和输出线独立所以允许同时完成数据的输入和输出。不同的SPI设备的实现方式不尽相同,主要时改变和采集数据的时间不同,在时钟信号上升沿或下降沿采集有不同的定义。

SPI总线有四种工作方式(SPI0、SPI1、SPI2、SPI3),其中使用的最为广泛的是SPI0和SPI3方式。

SPI模块为了和外设进行数据交换,根据外设工作要求,其输出串行同步时钟极性和相位可以进行配置,时钟极性(CPOL)对传输协议没有重大的影响。如果CPOL=0,串行同步时钟的空闲状态为低电平;如果CPOL=1,串行同步时钟的空闲状态为高电平。时钟相位(CPHA)能够配置用于选择两种不同的传输协议之一进行数据传输。如果CPHA=0,在串行同步时钟的第一个跳变沿(上升沿或下降沿)数据被采集;如果CPHA=1,在串行同步时钟的第二个跳变沿(上升沿或下降沿)数据被采集。SPI主模块和与之通信的外设时钟相位和极性应该一致。

SPI时序图详解:SPI接口有四种不同的数据传输时序,取决于CPOL和CPHA的组合。图3中给出了这四种时序,时序与CPOL和CPHA的关系也可以从图中看出。

图3 SPI四种时序

图3中可以看出,CPOL是用来决定SCK时钟信号空闲时的电平。CPOL=0,SCK空闲时为低电平;CPOL=1,SCK空闲时为高电平。CPHA是用来决定采样输入数据MISO时刻,CPHA = 0,在第一个SCK时钟沿进行数据采样;CPHA=1,在第二个SCK时钟沿进行数据采集。(工作模式的确定:由SLAVE的工作模式确定MASTER的工作模式)。

二、SPI协议使用举例

这里通过使用SPI3来实现主机发送数据。

图4 SPI3 工作模式的主机发送数据

在SPI3模式下,CPOL = 1,CPHA = 1。SCK在空闲时为高电平,在SCK的第二个时钟沿从机进行数据的采集(只考虑主机发送情况),在SCK的第一个时钟沿发送数据MOSI。

三、使用verilog实现SPI3工作模式的时序

1、SPI3模式下工作过程如下图所示,

图5 SPI发送数据过程

接下来分析图5所示SPI发送数据的过程,首先在复位信号到来时,进入s0状态,在s0状态计数器和分频器模块加载初始值,如果发送数据开始信号spi_start有效进入s1状态,s1状态加载待发送的数据,同时计数器计数计数,分频器开始工作,如果i=1,进入s2状态,s2状态主要用来发送数据,如果i为偶数,进入s3状态,该状态是用来采集数据,由于只考虑发送,因此此模块不进行数据采集工作,如果i=15,进入s4状态,否则如果i为奇数,则进入s2状态。;在s4状态,发送最后一位数据,如果i=16,进入s5状态,此时整个SPI时序模拟完成。

2、数据路径

由图5可知,构成SPI发送时序的基本电路块包括计数器,移位寄存器和触发器模块。

图6 数据路径

图6中,左移寄存器将8位的待发送的数据spi_data转换为串行的数据mosi一位一位的发送出去,计数器用来计数发送数据的个数,触发器用来产生分频后的sck时钟信号。

3、控制信号

图7 控制信号

图7中给出了各个状态哪些控制信号应该有效,参照图5图6图7可以理清spi整个发送数据的过程。

四、 verilog描述

接下来使用verilog来描述图6所示的电路,控制信号可根据图7进行描述。

spi发送模块(该模块主要描述控制信号):

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
module SPI_SEND(input clk_50m,
input rst_n,
input spi_start,
input[7:0] spi_data,
output reg spi_done,
output sck,
output reg cs,
output mosi
);
reg load_c;
reg en_c;
reg load_a;
reg en_a;
reg load_b;
reg en_b;
wire [4:0]i;
parameter [4:0] s0 = 'b000001;
parameter [4:0] s1 = 'b000010;
parameter [4:0] s2 = 'b000100;
parameter [4:0] s3 = 'b001000;
parameter [4:0] s4 = 'b010000;
parameter [4:0] s5 = 'b100000;
reg [5:0]current_state = 'd0;
reg [5:0]next_state = 'd0;
always @(posedge clk_50m or negedge rst_n)
if(!rst_n)
current_state <= s0;
else
current_state <= next_state;
always @(*)
case(current_state)
s0:	begin
if(spi_start)
next_state = s1;
else
next_state = s0;
end
s1:	begin/该状态加载待发送的数据
if(i == 'd1)
next_state = s2;
else
next_state = s1;
end
s2:	begin1,3,5,7,9,11,13,15
if(i[0] == 1'b0)//
next_state = s3;
else
next_state = s2;
end
s3:	begin2,4,6,8,10,12,14,16
if(i == 'd15)
next_state = s4;
else if(i[0] == 'd1)
next_state = s2;
else
next_state = s3;
end
s4:	begin
if(i == 'd16)
next_state = s5;
else
next_state = s4;
end
s5:	begin
if(i == 'd0)
next_state = s0;
else
next_state = s5;
end
default:	next_state = s0;
endcase
always @(*)
case(current_state)
s0:	begin///空闲状态
load_c = 'd1;
en_c = 'd0;
load_a = 'd0;
en_a = 'd0;
load_b = 'd1;
en_b = 'd0;
spi_done = 'd0;
cs = 'd1;
end
s1:	begin加载待发送数据状态
load_c = 'd0;
en_c = 'd1;
load_a = 'd1;
en_a = 'd0;
load_b = 'd0;
en_b = 'd1;
spi_done = 'd0;
cs = 'd0;			
end
s2:	begin	第一个时钟沿发送数据
load_c = 'd0;
en_c = 'd1;
load_a = 'd0;
en_a = 'd1;
load_b = 'd0;
en_b = 'd1;
spi_done = 'd0;
cs = 'd0;	
end
s3:	begin第二个时钟沿采样数据
load_c = 'd0;
en_c = 'd1;
load_a = 'd0;
en_a = 'd0;
load_b = 'd0;
en_b = 'd1;
spi_done = 'd0;
cs = 'd0;
end
s4:	begin数据发送完毕
load_c = 'd0;
en_c = 'd1;
load_a = 'd0;
en_a = 'd0;
load_b = 'd0;
en_b = 'd0;
spi_done = 'd0;
cs = 'd0;			
end
s5:	begin
load_c = 'd0;
en_c = 'd0;
load_a = 'd0;
en_a = 'd0;
load_b = 'd0;
en_b = 'd0;
spi_done = 'd1;
cs = 'd1;	
end
default:	begin
load_c = 'd1;
en_c = 'd0;
load_a = 'd0;
en_a = 'd0;
load_b = 'd1;
en_b = 'd0;
spi_done = 'd0;
cs = 'd1;			
end
endcase
// Instantiate the module
count_num count_num (
.clk_50m(clk_50m), 
.load_c(load_c), 
.en_c(en_c), 
.count(i)
);
// Instantiate the module
left_shifter left_shifter (
.clk_50m(clk_50m), 
.load_a(load_a), 
.en_a(en_a), 
.spi_data_in(spi_data), 
.mosi(mosi)
);
// Instantiate the module
sck_generate sck_generate (
.clk_50m(clk_50m), 
.load_b(load_b), 
.en_b(en_b), 
.sck(sck)
);
endmodule

计数器电路描述:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
module count_num(input clk_50m,
input load_c,
input en_c,
output reg[4:0]count
);
always @(posedge clk_50m)	 
if(load_c)
count <= 'd0; 
else if(en_c)	begin
if(count == 'd16)
count <= 'd0;
else
count <= count + 'd1;
end
else
count <= count;
endmodule

移位寄存器电路描述:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
module left_shifter(input clk_50m,
input load_a,
input en_a,
input [7:0]spi_data_in,
output mosi
);
reg [7:0]data_reg;
always @(posedge clk_50m)
if(load_a)
data_reg <= spi_data_in;
else if(en_a)
data_reg <= {data_reg[6:0],1'b0};
else
data_reg <= data_reg;
assign mosi = data_reg[7];
endmodule

触发器电路描述:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
//SPI3模式下工作,SCK空闲时为高电平
//
module sck_generate(input clk_50m,
input load_b,
input en_b,
output reg sck
);
always @(posedge clk_50m)
if(load_b)
sck <= 'd1;
else if(en_b)
sck <= ~sck;
else
sck <= 'd1;
endmodule

仿真激励文件:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
module test;
// Inputs
reg clk_50m;
reg rst_n;
reg spi_start;
reg [7:0]spi_data;
// Outputs
wire spi_done;
wire sck;
wire cs;
wire mosi;
// Instantiate the Unit Under Test (UUT)
SPI_SEND uut (
.clk_50m(clk_50m), 
.rst_n(rst_n), 
.spi_start(spi_start), 
.spi_done(spi_done), 
.sck(sck), 
.cs(cs), 
.spi_data(spi_data),
.mosi(mosi)
);
initial begin
// Initialize Inputs
clk_50m = 0;
rst_n = 0;
spi_start = 0;
spi_data = 'd0;
// Wait 100 ns for global reset to finish
#100;
// Add stimulus here
end
always #5 clk_50m = ~clk_50m;
reg [4:0] count = 'd0;
always @(posedge clk_50m)	
if(count == 'd20)
count <= 'd20;
else
count <= count + 'd1;
always @(posedge clk_50m)
if(count <= 'd10)
rst_n <= 'd0;
else
rst_n <= 'd1;
reg [9:0]cnt = 'd0; 
always @(posedge clk_50m)
if(spi_done)	
cnt <= 'd0;
else if(cnt == 'd500)
cnt <= 'd500;
else
cnt <= cnt + 'd1;
always @(posedge clk_50m)
if(cnt=='d499)	begin
spi_start <= 'd1;
spi_data <= 'b10101010;
end
else	begin
spi_start <= 'd0;
spi_data <= spi_data;
end
endmodule

使用ISIM仿真结果:

图8 仿真结果

图8中待发送的数据spi_data[7:0]=10101010,由于使用的是SPI3模式(CPOL=1,CPHA=1),此模式下SCK空闲时为1,在SCK第一个时钟沿进行数据发送(即图中SCK下降沿进行数据发送),从图中波形可以看出 ,在cs为低时,mosi被一位一位的送出(高位先输出)。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/181785.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022年10月15日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
SPI协议_Verilog实现「建议收藏」
概述: 通过Verilog代码+仿真的形式来理解SPI的时序,此处只写了主机发送,从机接收的代码,后待续。。。
全栈程序员站长
2022/11/04
2.1K0
SPI协议_Verilog实现「建议收藏」
FPGA实现spi协议通信_fpga pll
SPI 协议是由摩托罗拉公司提出的通讯协议(Serial Peripheral Interface),即串行外围设备接口,是一种高速全双工的通信总线。它被广泛地使用在 ADC、LCD 等设备与 MCU 间,要求通讯速率较高的场合。
全栈程序员站长
2022/11/09
1.4K0
FPGA实现spi协议通信_fpga pll
FPGA零基础学习:SPI 协议驱动设计(上)
本系列将带来FPGA的系统性学习,从最基本的数字电路基础开始,最详细操作步骤,最直白的言语描述,手把手的“傻瓜式”讲解,让电子、信息、通信类专业学生、初入职场小白及打算进阶提升的职业开发者都可以有系统性学习的机会。
FPGA技术江湖
2021/03/23
1.1K0
FPGA零基础学习:SPI 协议驱动设计(上)
fpga的spi的编程_UASP协议
FPGA实现的SPI协议(二)—-基于SPI接口的FLASH芯片M25P16的使用
全栈程序员站长
2022/11/03
1.3K0
fpga的spi的编程_UASP协议
2.2 SPI协议的FPGA实现
  SPI(Serial Peripheral Interface,串行外围设备接口),是Motorola公司提出的一种同步串行接口技术,是一种高速、全双工、同步通信总线,在芯片中只占用四根管脚用来控制及数据传输,广泛用于EEPROM、Flash、RTC(实时时钟)、ADC(数模转换器)、DSP(数字信号处理器)以及数字信号解码器上。SPI通信的速度很容易达到好几兆bps,所以可以用SPI总线传输一些未压缩的音频以及压缩的视频。   下图是只有2个chip利用SPI总线进行通信的结构图
碎碎思
2020/06/30
2.3K0
FPGA零基础学习:SPI 协议驱动设计
本系列将带来FPGA的系统性学习,从最基本的数字电路基础开始,最详细操作步骤,最直白的言语描述,手把手的“傻瓜式”讲解,让电子、信息、通信类专业学生、初入职场小白及打算进阶提升的职业开发者都可以有系统性学习的机会。
FPGA技术江湖
2020/12/30
1.7K0
SPI 接口协议的Verilog HDL 实现
1.串行外设接口SPI(Serial Peripheral Interface)是一种由Motorola 公司推出的一种同步串行接口,得到了广泛应用。SPI 接口可以共享,便于组成带多个SPI 接口器件的系统,且传送速率可编程,连接线少,具有良好的扩展性,是一种优秀的同步时序电路。 SPI,顾名思义就是串行外围设备接口,只需4 条线就可以完成主、从与各种外围器件全双工同步通讯。4 根接口线分别是:串行时钟线(SCK)、主机输入/从机输出数据线(MISO)、主机输出/从机输入数据线(MOSI)、低电平有效从机
瓜大三哥
2018/02/24
3K1
SPI 接口协议的Verilog HDL 实现
Verilog:【8】基于FPGA实现SD NAND FLASH的SPI协议读写
在此介绍的是使用FPGA实现SD NAND FLASH的读写操作,以雷龙发展提供的CS创世SD NAND FLASH样品为例,分别讲解电路连接、读写时序与仿真和实验结果。
用户11033168
2024/06/21
2310
Verilog:【8】基于FPGA实现SD NAND FLASH的SPI协议读写
FPGA零基础学习:SPI 协议驱动设计(下)
该模块负责将外部写fifo中的数据写入到flash中。wr_fifo_rd为写fifo的读使能信号,wrdata为从写fifo中读出的数据,wr_len为需要写入flash中数据的长度,wr_addr为写入地址。
FPGA技术江湖
2021/03/23
1.4K0
FPGA零基础学习:SPI 协议驱动设计(下)
FPGA零基础学习之Vivado-RTC实时时钟系统设计
本系列将带来FPGA的系统性学习,从最基本的数字电路基础开始,最详细操作步骤,最直白的言语描述,手把手的“傻瓜式”讲解,让电子、信息、通信类专业学生、初入职场小白及打算进阶提升的职业开发者都可以有系统性学习的机会。
FPGA技术江湖
2023/08/22
5420
FPGA零基础学习之Vivado-RTC实时时钟系统设计
【收藏】FPGA数字IC刷题58个Verilog代码及讲解(状态机、跨时钟、同步/异步FIFO、DMUX、奇数/小数分频)
牛客 Verilog 刷题入门篇1~24 + 进阶篇1~34 题解代码,所有代码均能通过测试,配合视频讲解效果更佳。本文给出代码,部分题目给出必要说明。 很多题目本身出题有些问题,着重理解题目,没必要钻牛角尖。
FPGA探索者
2022/11/01
3.1K0
【收藏】FPGA数字IC刷题58个Verilog代码及讲解(状态机、跨时钟、同步/异步FIFO、DMUX、奇数/小数分频)
FPGA实现的SPI协议(二)—-基于SPI接口的FLASH芯片M25P16的使用「建议收藏」
FPGA实现的SPI协议(二)—-基于SPI接口的FLASH芯片M25P16的使用
全栈程序员站长
2022/11/03
1.6K0
FPGA实现的SPI协议(二)—-基于SPI接口的FLASH芯片M25P16的使用「建议收藏」
FPGA设计中,对SPI进行参数化结构设计
大侠好,欢迎来到FPGA技术江湖,江湖偌大,相见即是缘分。大侠可以关注FPGA技术江湖,在“闯荡江湖”、"行侠仗义"栏里获取其他感兴趣的资源,或者一起煮酒言欢。
FPGA技术江湖
2020/12/29
6940
FPGA设计中,对SPI进行参数化结构设计
基于FPGA的SDRAM控制器设计(4)[通俗易懂]
前面的三篇文章,我们已经简述了基本的SDRAM的基本操作。这里总结一下SDRAM的几个模块,SDRAM的上电初始化,自刷新、读写模块、顶层仲裁控制。了解了上面的操作,我们已经可以完成SDRAM控制器的代码完成,接下来我们便完善SDRAM控制器的接口,简化该SDRAM控制器设计,使得该SDRAM控制器可以很容易的使用。下面的接口定义如下:
全栈程序员站长
2022/07/28
7100
基于FPGA的SDRAM控制器设计(4)[通俗易懂]
SPI控制8_8点阵屏
SPI是串行外设接口(Serial Peripheral Interface)的缩写。是一种高速的(10Mbps)的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线。
WuShF
2024/02/17
2980
SPI控制8_8点阵屏
基于FPGA的扩频通信系统设计(附主要代码)
今天给大侠带来基于FPGA的扩频系统设计,由于篇幅较长,分三篇。今天带来第一篇,下篇。话不多说,上货。
FPGA技术江湖
2022/02/16
2K1
基于FPGA的扩频通信系统设计(附主要代码)
FPGA零基础学习:UART协议驱动设计
本系列将带来FPGA的系统性学习,从最基本的数字电路基础开始,最详细操作步骤,最直白的言语描述,手把手的“傻瓜式”讲解,让电子、信息、通信类专业学生、初入职场小白及打算进阶提升的职业开发者都可以有系统性学习的机会。
FPGA技术江湖
2021/03/23
9590
FPGA零基础学习:UART协议驱动设计
基于FPGA的扩频系统设计(下)
今天给大侠带来基于FPGA的扩频系统设计,由于篇幅较长,分三篇。今天带来第一篇,下篇。话不多说,上货。
FPGA技术江湖
2021/04/20
4820
基于FPGA的扩频系统设计(下)
FPGA综合项目——SDRAM控制器
再者就是通信处理模块,具体的通信设置,发送什么命令是写?什么命令是读?发的什么数据?等等。
全栈程序员站长
2022/09/16
6680
FPGA综合项目——SDRAM控制器
基于FPGA的内存128M flash芯片控制器设计
大侠好,欢迎来到FPGA技术江湖,江湖偌大,相见即是缘分。大侠可以关注FPGA技术江湖,在“闯荡江湖”、"行侠仗义"栏里获取其他感兴趣的资源,或者一起煮酒言欢。
FPGA技术江湖
2020/12/29
7050
基于FPGA的内存128M flash芯片控制器设计
相关推荐
SPI协议_Verilog实现「建议收藏」
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验