前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >leetcode刷题(131)——背包问题理解

leetcode刷题(131)——背包问题理解

作者头像
老马的编程之旅
发布2022-11-21 09:33:55
4400
发布2022-11-21 09:33:55
举报
文章被收录于专栏:深入理解Android

面试的话,其实掌握01背包,和完全背包,就够用了,最多可以再来一个多重背包。

01背包问题描述

有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

每一件物品其实只有两个状态,取或者不取,所以可以使用回溯法搜索出所有的情况,那么时间复杂度就是

o(2^n)

,这里的n表示物品数量。

所以暴力的解法是指数级别的时间复杂度。进而才需要动态规划的解法来进行优化!

二维dp数组01背包

确定dp数组以及下标的含义 对于背包问题,有一种写法, 是使用二维数组,即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。

确定递推公式 再回顾一下dp[i][j]的含义:从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。

那么可以有两个方向推出来dp[i][j],

不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以被背包内的价值依然和前面相同。) 放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值 所以递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

dp数组如何初始化 关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱。

首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。

在看其他情况。

状态转移方程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。

dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。

那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。

当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。

代码语言:javascript
复制
public static void main(String[] args) {
        int[] weight = {1, 3, 4};
        int[] value = {15, 20, 30};
        int bagsize = 4;
        testweightbagproblem(weight, value, bagsize);
    }

    public static void testweightbagproblem(int[] weight, int[] value, int bagsize){
        int wlen = weight.length, value0 = 0;
        //定义dp数组:dp[i][j]表示背包容量为j时,前i个物品能获得的最大价值
        int[][] dp = new int[wlen + 1][bagsize + 1];
        //初始化:背包容量为0时,能获得的价值都为0
        for (int i = 0; i <= wlen; i++){
            dp[i][0] = value0;
        }
        //遍历顺序:先遍历物品,再遍历背包容量
        for (int i = 1; i <= wlen; i++){
            for (int j = 1; j <= bagsize; j++){
                if (j < weight[i - 1]){
                    dp[i][j] = dp[i - 1][j];
                }else{
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weight[i - 1]] + value[i - 1]);
                }
            }
        }
        //打印dp数组
        for (int i = 0; i <= wlen; i++){
            for (int j = 0; j <= bagsize; j++){
                System.out.print(dp[i][j] + " ");
            }
            System.out.print("\n");
        }
    }

背包问题二维到一维优化

为什么可以转为一维

首先观察状态转移方程 dp[i][j]是由 dp[i-1][jxxxx]推导而来,仅看第一个维度,即i - 1 与 i ,可以发现第i层是由上一层推导而来的。

故我们不必要保存i - 2 层,比如我们计算第三层是只需要第二层的。不需要第一层的数据。

当我们去掉i时,即我们不需要控制第几层,只需要长度为j的数组,保存确认过最新的一层。作为下一层的参考。例如我们计算第三层dp时,此时dp原数据保存的是第二层的结果

为什么要逆序

首先,通过上一个问题,我们确认了我们目前一维的dp数组,保存的是确认过的最新一层的数据,即上一层的数据。

当我们计算当前层时,对于二维时的状态转移方程有

dp[i][j] = max(dp[i][j], dp[i - 1][j - v[i]] + w[i]);

可以看到,dp[i - 1][j - v[i]] + w[i] 使用的上一层的原始数据(dp[i - 1]),而我们使用一维的状态转移方程时有

dp[j] = max(dp[j], dp[j - v[i]] + w[i]);

当我们从小到大更新是, 因为j - v[i] 是严格小于j 的,所以我们可以举个例子 dp[3] = max(dp[3], dp[2] + 1); 因为我们是从小到大更新的,所以当更新到dp[3]的时候,dp[2]已经更新过了,已经不是上一层的dp[2]。

而当我们逆序更新时有,举例 dp[8] = max(dp[8], dp[6] + 2)当更新dp[8]时,dp[6]还没有被更新,还是上一层的数据,这样才能保证没有读入脏数据。

代码语言:javascript
复制
 public static void main(String[] args) {
        int[] weight = {1, 3, 4};
        int[] value = {15, 20, 30};
        int bagWight = 4;
        testWeightBagProblem(weight, value, bagWight);
    }

    public static void testWeightBagProblem(int[] weight, int[] value, int bagWeight){
        int wLen = weight.length;
        //定义dp数组:dp[j]表示背包容量为j时,能获得的最大价值
        int[] dp = new int[bagWeight + 1];
        //遍历顺序:先遍历物品,再遍历背包容量
        for (int i = 0; i < wLen; i++){
            for (int j = bagWeight; j >= weight[i]; j--){
                dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
            }
        }
        //打印dp数组
        for (int j = 0; j <= bagWeight; j++){
            System.out.print(dp[j] + " ");
        }
    }
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022-11-15,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 01背包问题描述
  • 二维dp数组01背包
  • 背包问题二维到一维优化
    • 为什么可以转为一维
      • 为什么要逆序
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档