以前一直在用C语言,很多数据结构都是自己造的,比如链表、队列等,但是搞竞赛还是C++ 有优势,感觉好多题都是针对C++ 出题的 所以打算学学C++,所以现在先整理一下STL中一些最常用的容器的使用方法和迭代器备用。
容器(Container)
迭代器(Iterator)
1、容器
作为STL的最主要组成部分--容器,分为向量(vector),双端队列(deque),表(list),队列(queue),堆栈(stack),集合(set),多重集合(multiset),映射(map),多重映射(multimap)。
容器 | 特性 | 所在头文件 |
---|---|---|
向量vector | 可以用常数时间访问和修改任意元素,在序列尾部进行插入和删除时,具有常数时间复杂度,对任意项的插入和删除就有的时间复杂度与到末尾的距离成正比,尤其对向量头的添加和删除的代价是惊人的高的 | <vector> |
双端队列deque | 基本上与向量相同,唯一的不同是,其在序列头部插入和删除操作也具有常量时间复杂度 | <deque> |
表list | 对任意元素的访问与对两端的距离成正比,但对某个位置上插入和删除一个项的花费为常数时间。 | <list> |
队列queue | 插入只可以在尾部进行,删除、检索和修改只允许从头部进行。按照先进先出的原则。 | <queue> |
堆栈stack | 堆栈是项的有限序列,并满足序列中被删除、检索和修改的项只能是最近插入序列的项。即按照后进先出的原则 | <stack> |
集合set | 由节点组成的红黑树,每个节点都包含着一个元素,节点之间以某种作用于元素对的谓词排列,没有两个不同的元素能够拥有相同的次序,具有快速查找的功能。但是它是以牺牲插入删除操作的效率为代价的 | <set> |
多重集合multiset | 和集合基本相同,但可以支持重复元素具有快速查找能力 | <set> |
映射map | 由{键,值}对组成的集合,以某种作用于键对上的谓词排列。具有快速查找能力 | <map> |
多重集合multimap | 比起映射,一个键可以对应多了值。具有快速查找能力 | <map> |
3、迭代器
它的具体实现在<itertator>中,我们完全可以不管迭代器类是怎么实现的,大多数的时候,把它理解为指针是没有问题的(指针是迭代器的一个特例,它也属于迭代器),但是,决不能完全这么做。
迭代器功能 | ||
---|---|---|
输入迭代器 Input iterator | 、Reads forward | istream |
输出迭代器 Output iterator | 向前写 Writes forward | ostream,inserter |
前向迭代器 Forward iterator | 向前读写 Read and Writes forward | |
双向迭代器 Bidirectional iterator | 向前向后读写 Read and Writes forward and backward | list,set,multiset,map,mul timap |
随机迭代器 Random access iterator | 随机读写 Read and Write with random access | vector,deque,array,string |
C++ STL中最基本以及最常用的类或容器无非就是以下几个:
下面就依次介绍它们,并给出一些最常见的最实用的使用方法,做到快速入门。
首先看看我们C语言一般怎么使用字符串的
char* s1 = "Hello SYSU!"; //创建指针指向字符串常量,这段字符串我们是不能修改的
//想要创建 可以修改的字符串,我们可以使用数组分配空间
char s2[20] = "Hello SYSU!";
//或者这样
char s3[] = "Hello SYSU!";
//当然我们也可以动态分配内存
char* s4 = (char*)malloc(20);
gets(s4);
C++ 标准库中的string表示可变长的字符串,它在头文件string里面。
#include <string>
用string初始化字符串分两类:用“=”号就是拷贝初始化,否则就是直接初始化。
string s1;//初始化字符串,空字符串
string s2 = s1; //拷贝初始化,深拷贝字符串
string s3 = "I am Yasuo"; //直接初始化,s3存了字符串
string s4(10, 'a'); //s4存的字符串是aaaaaaaaaa
string s5(s4); //拷贝初始化,深拷贝字符串
string s6("I am Ali"); //直接初始化
string s7 = string(6, 'c'); //拷贝初始化,cccccc
#include <iostream>
#include <string>
using namespace std;
int main()
{
string s1;//初始化字符串,空字符串
string s2 = s1; //拷贝初始化,深拷贝字符串
string s3 = "I am Yasuo"; //直接初始化,s3存了字符串
string s4(10, 'a'); //s4存的字符串是aaaaaaaaaa
string s5(s4); //拷贝初始化,深拷贝字符串
string s6("I am Ali"); //直接初始化
string s7 = string(6, 'c'); //拷贝初始化,cccccc
//string的各种操作
string s8 = s3 + s6;//将两个字符串合并成一个
s3 = s6;//用一个字符串来替代另一个字符串的对用元素
cin >> s1;
cout << s1 << endl;
cout << s2 << endl;
cout << s3 << endl;
cout << s4 << endl;
cout << s5 << endl;
cout << s6 << endl;
cout << s7 << endl;
cout << s8 << endl;
cout << "s7 size = " << s7.size() << endl; //字符串长度,不包括结束符
cout << (s2.empty() ? "This string is empty" : "This string is not empty") << endl;;
system("pause");
return 0;
}
使用cin读入字符串时,遇到空白就停止读取。比如程序输入的是
" Hello World"
那么我们得到的字符串将是"Hello",前面的空白没了,后面的world也读不出来。
如果我们想把整个hello world读进来怎么办?那就这样做
cin>>s1>>s2;
hello存在s1里,world存在s2里了。
有时我们想把一个句子存下来,又不想像上面那样创建多个string来存储单词,怎么办?
那就是用getline来获取一整行内容。
string str;
getline(cin, str);
cout << str << endl;
当把string对象和字符面值及字符串面值混在一条语句中使用时,必须确保+的两侧的运算对象至少有一个是string
string s1 = s2 + ", "; //正确
string s3 = "s " + ", "; //错误
string s4 = "hello" + ", " + s1; //错误
string s5 = s1 + "hello " + ", "; //改一下顺序,s1放前头,正确了,注意理解=号右边的运算顺序
访问字符串的每个字符
for (int i = 0; i < s3.size(); i++)
{
cout << s3[i] << endl;
s3[i] = 's';
}
在C语言中我都是用下标或者指针来访问数组元素,而在C++里,有个新奇的东西叫做迭代器iterator,我们可以使用它来访问容器元素。
string str("hi sysu");
for (string::iterator it = str.begin(); it != str.end(); it++)
{
cout << *it << endl;
}
我们也可以是使用const_iterator使得访问元素时是能读不能写,这跟常量指针意思差不多。
string str2("hi sysu");
for (string::const_iterator it = str2.begin(); it != str2.end(); it++)
{
cout << *it << endl;
*it = 'l'; //这是错误的,不能写
}
string还有一些很好用的函数,比如找子串
string sq("heoolo sdaa ss");
cout << s.find("aa", 0) << endl; //返回的是子串位置。第二个参数是查找的起始位置,如果找不到,就返回string::npos
if (s.find("aa1", 0) == string::npos)
{
cout << "找不到该子串!" << endl;
}
C++ STL中的verctor好比是C语言中的数组,但是vector又具有数组没有的一些高级功能。与数组相比,vector就是一个可以不用再初始化就必须制定大小的边长数组,当然了,它还有许多高级功能。
要想用vector首先得包含头文件vector。
#include <vector>
怎么初始化?
如果vector的元素类型是int,默认初始化为0;如果vector元素类型为string,则默认初始化为空字符串。
vector<int> v1;
vector<father> v2;
vector<string> v3;
vector<vector<int> >; //注意空格。这里相当于二维数组int a[n][n];
vector<int> v5 = { 1,2,3,4,5 }; //列表初始化,注意使用的是花括号
vector<string> v6 = { "hi","my","name","is","lee" };
vector<int> v7(5, -1); //初始化为-1,-1,-1,-1,-1。第一个参数是数目,第二个参数是要初始化的值
vector<string> v8(3, "hi");
vector<int> v9(10); //默认初始化为0
vector<int> v10(4); //默认初始化为空字符串
如何向vector添加元素?
请使用push_back加入元素,并且这个元素是被加在数组尾部的。
for (int i = 0; i < 20; i++)
{
v1.push_back(i);
}
vector其他的操作
访问和操作vector中的每个元素
for (int i = 0; i < v1.size(); i++)
{
cout << v1[i] << endl;
v1[i] = 100;
cout << v1[i] << endl;
}
注意:只能对已存在的元素进行赋值或者修改操作,如果是要加入新元素,务必使用push_back。push_back的作用有两个:告诉编译器为新元素开辟空间、将新元素存入新空间里。
比如下面的代码是错误的,但是编译器不会报错,就像是数组越界。
vector<int> vec;
vec[0] = 1; //错误!
当然我们也可以选择使用迭代器来访问元素
vector<string> v6 = { "hi","my","name","is","lee" };
for (vector<string>::iterator iter = v6.begin(); iter != v6.end(); iter++)
{
cout << *iter << endl;
//下面两种方法都行
cout << (*iter).empty() << endl;
cout << iter->empty() << endl;
}
上面是正向迭代,如果我们想从后往前迭代该如何操作? 使用反向迭代器
for (vector<string>::reverse_iterator iter = v6.rbegin(); iter != v6.rend(); iter++)
{
cout << *iter << endl;
}
vector最常用的增删操作
#include <iostream>
#include <vector>
#include <string>
using namespace std;
template <typename T>
void showvector(vector<T> v)
{
for (vector<T>::iterator it = v.begin(); it != v.end(); it++)
{
cout << *it;
}
cout << endl;
}
int main()
{
vector<string> v6 = { "hi","my","name","is","lee" };
v6.resize(3); //重新调整vector容量大小
showvector(v6);
vector<int> v5 = { 1,2,3,4,5 }; //列表初始化,注意使用的是花括号
cout << v5.front() << endl; //访问第一个元素
cout << v5.back() << endl; //访问最后一个元素
showvector(v5);
v5.pop_back(); //删除最后一个元素
showvector(v5);
v5.push_back(6); //加入一个元素并把它放在最后
showvector(v5);
v5.insert(v5.begin()+1,9); //在第二个位置插入新元素
showvector(v5);
v5.erase(v5.begin() + 3); //删除第四个元素
showvector(v5);
v5.insert(v5.begin() + 1, 7,8); //连续插入7个8
showvector(v5);
v5.clear(); //清除所有内容
showvector(v5);
system("pause");
return 0;
}
注意:虽然vertor对象可以动态增长,但是也或有一点副作用:已知的一个限制就是不能再范围for循环中向vector对象添加元素。另外一个限制就是任何一种可能改变vector对象容量的操作,不如push_back,都会使该迭代器失效。
总而言之就是:但凡使用了迭代器的循环体,都不要向迭代器所属的容器添加元素!
C++中push_back和insert两个有什么区别?
顾名思义push_back把元素插入容器末尾,insert把元素插入任何你指定的位置。 不过push_back速度一般比insert快。如果能用push_back尽量先用push_back。
set跟vector差不多,它跟vector的唯一区别就是,set里面的元素是有序的且唯一的,只要你往set里添加元素,它就会自动排序,而且,如果你添加的元素set里面本来就存在,那么这次添加操作就不执行。要想用set先加个头文件set。
#include <set>
#include <iostream>
#include <set>
#include <string>
using namespace std;
template <typename T>
void showset(set<T> v)
{
for (set<T>::iterator it = v.begin(); it != v.end(); it++)
{
cout << *it;
}
cout << endl;
}
int main()
{
set<int> s1{9,8,1,2,3,4,5,5,5,6,7,7 }; //自动排序,从小到大,剔除相同项
showset(s1);
set<string> s2{ "hello","sysy","school","hello" }; //字典序排序
showset(s2);
s1.insert(9); //有这个值了,do nothing
showset(s1);
s2.insert("aaa"); //没有这个字符串,添加并且排序
showset(s2);
system("pause");
return 0;
}
list就是链表,在C语言中我们想使用链表都是自己去实现的,实现起来倒不难,但是如果有现成的高效的链表可以使用的话,我们就不需要重复造轮子了。STL就提供了list容器给我们。
list是一个双向链表,而单链表对应的容器则是foward_list。
list即双向链表的优点是插入和删除元素都比较快捷,缺点是不能随机访问元素。
初始化方式就大同小异了,跟vector基本一样。要想用list先加个头文件list。
#include <list>
#include <iostream>
#include <list>
#include <string>
using namespace std;
template <typename T>
void showlist(list<T> v)
{
for (list<T>::iterator it = v.begin(); it != v.end(); it++)
{
cout << *it;
}
cout << endl;
}
int main()
{
list<int> l1{ 1,2,3,4,5,5,6,7,7 };
showlist(l1);
list<double> l2;
list<char> l3(10);
list<int> l4(5, 10); //将元素都初始化为10
showlist(l4);
system("pause");
return 0;
}
值得注意的是,list容器不能调用algorithm下的sort函数进行排序,因为sort函数要求容器必须可以随机存储,而list做不到。所以,list自己做了一个自己用的排序函数,用法如下:
list<int> l1{ 8,5,7,6,1,2,3,4,5,5,6,7,7 };
l1.sort();
map运用了哈希表地址映射的思想,也就是key-value的思想,来实现的。
首先给出map最好用也最最常用的用法例子,就是用字符串作为key去查询操作对应的value。
要使用map得先加个头文件map。
#include <map>
#include <iostream>
#include <map>
#include <string>
using namespace std;
void showmap(map<string, int> v)
{
for (map<string, int>::iterator it = v.begin(); it != v.end(); it++)
{
cout << it->first << " " << it->second << endl; //注意用法,不是用*it来访问了。first表示的是key,second存的是value
}
cout << endl;
}
int main()
{
map<string, int> m1; //<>里的第一个参数表示key的类型,第二个参数表示value的类型
m1["Kobe"] = 100;
m1["James"] = 99;
m1["Curry"] = 98;
string s("Jordan");
m1[s] = 90;
cout << m1["Kobe"] << endl;
cout << m1["Jordan"] << endl;
cout << m1["Durant"] << endl; //不存在这个key,就显示0
m1.erase("Curry");//通过关键字来删除
showmap(m1);
m1.insert(pair<string, int>("Harris", 89)); //也可以通过insert函数来实现增加元素
showmap(m1);
m1.clear(); //清空全部
system("pause");
return 0;
}
如果想看看某个存不存在某个key,可以用count来判断
if (m1.count("Lee"))
{
cout << "Lee is in m1!" << endl;
}
else
{
cout << "Lee do not exist!" << endl;
}
用迭代器来访问元素
for (map<string, int>::iterator it = m1.begin(); it != m1.end(); it++)
{
cout << it->first<<" "<<it->second << endl; //注意用法,不是用*it来访问了。first表示的是key,second存的是value
}
常用算法:
accumulate() 元素累加
adjacent_difference() 相邻元素的差额
adjacent_find() 搜寻相邻的重复元素
binary_search() 二元搜寻
copy() 复制
copy_backward() 逆向复制
count() 计数
count_if() 在特定条件下计数
equal() 判断相等与否
equal_range() 判断相等与否(传回一个上下限区间范围)
fill() 改填元素值
fill_n() 改填元素值,n 次
find() 搜寻
find_if() 在特定条件下搜寻
find_end() 搜寻某个子序列的最后一次出现地点
find_first_of() 搜寻某些元素的首次出现地点
for_each() 对范围内的每一个元素施行某动作
generate() 以指定动作的运算结果充填特定范围内的元素
generate_n() 以指定动作的运算结果充填 n 个元素内容
includes() 涵盖於
inner_product() 内积
inplace_merge() 合并并取代(覆写)
iter_swap() 元素互换
lexicographical_compare() 以字典排列方式做比较
lower_bound() 下限
max() 最大值
max_element() 最大值所在位置
min() 最小值
min_element() 最小值所在位置
merge() 合并两个序列
mismatch() 找出不吻合点
next_permutation() 获得下一个排列组合
泛型演算法(Generic Algorithms)与 Function Obje4 cts
nth_element() 重新安排序列中第n个元素的左右两端
partial_sort() 局部排序
partial_sort_copy() 局部排序并复制到它处
partial_sum() 局部总和
partition() 切割
prev_permutation() 获得前一个排列组合
random_shuffle() 随机重排
remove() 移除某种元素(但不删除)
remove_copy() 移除某种元素并将结果复制到另一个 container
remove_if() 有条件地移除某种元素
remove_copy_if() 有条件地移除某种元素并将结果复制到另一个 container
replace() 取代某种元素
replace_copy() 取代某种元素,并将结果复制到另一个 container
replace_if() 有条件地取代
replace_copy_if() 有条件地取代,并将结果复制到另一个 container
reverse() 颠倒元素次序
reverse_copy() 颠倒元素次序并将结果复制到另一个 container
rotate() 旋转
rotate_copy() 旋转,并将结果复制到另一个 container
search() 搜寻某个子序列
search_n() 搜寻「连续发生 n 次」的子序列
set_difference() 差集
set_intersection() 交集
set_symmetric_difference() 对称差集
set_union() 联集
sort() 排序
stable_partition() 切割并保持元素相对次序
stable_sort() 排序并保持等值元素的相对次序
swap() 置换(对调)
swap_range() 置换(指定范围)
transform() 以两个序列为基础,交互作用产生第三个序列
unique() 将重复的元素摺叠缩编,使成唯一
unique_copy() 将重复的元素摺叠缩编,使成唯一,并复制到他处
upper_bound() 上限