前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >华汇数据带你了解下大数据服务能力

华汇数据带你了解下大数据服务能力

原创
作者头像
华汇数据
发布2022-11-23 15:07:13
5360
发布2022-11-23 15:07:13
举报
文章被收录于专栏:华汇数据服务

大数据服务能力其实是一个相对于大数据产品能力的概念。从企业实际建设大数据项目的角度来说,多数情况下简单地购买一些大数据产品并不能满足实际需求,往往需要供应商提供一定的服务来完成项目的建设。具体来说,大数据项目前期的规划、咨询、设计,实施阶段大数据平台等产品的部署以及定制化开发,进一步对已有数据的迁移、集成、整合以及在此基础上进行的数据治理,接下来的持续运维运营和迭代优化,结合业务进行的一些应用开发等,这些围绕数据开展的一系列工作都属于大数据服务的范畴。供应商向客户提供这些服务的水平就是我们提到的大数据服务能力。

大数据服务能力其实是一个相对于大数据产品能力的概念。从企业实际建设大数据项目的角度来说,多数情况下简单地购买一些大数据产品并不能满足实际需求,往往需要供应商提供一定的服务来完成项目的建设。具体来说,大数据项目前期的规划、咨询、设计,实施阶段大数据平台等产品的部署以及定制化开发,进一步对已有数据的迁移、集成、整合以及在此基础上进行的数据治理,接下来的持续运维运营和迭代优化,结合业务进行的一些应用开发等,这些围绕数据开展的一系列工作都属于大数据服务的范畴。供应商向客户提供这些服务的水平就是我们提到的大数据服务能力。 数据服务能力其实是一个相对于大数据产品能力的概念。从企业实际建设大数据项目的角度来说,多数情况下简单地购买一些大数据产品并不能满足实际需求,往往需要供应商提供一定的服务来完成项目的建设。具体来说,大数据项目前期的规划、咨询、设计,实施阶段大数据平台等产品的部署以及定制化开发,进一步对已有数据的迁移、集成、整合以及在此基础上进行的数据治理,接下来的持续运维运营和迭代优化,结合业务进行的一些应用开发等,这些围绕数据开展的一系列工作都属于大数据服务的范畴。供应商向客户提供这些服务的水平就是我们提到的大数据服务能力。 要理解大数据这一概念,首先要从”大”入手,”大”是指数据规模,大数据一般指在10TB(1TB=1024GB)规模以上的数据量。大数据同过去的海量数据有所区别,其基本特征可以用4个V来总结(Vol-ume、Variety、Value和Veloc-ity),即体量大、多样性、价值密度低、速度快。 有一两秒。 第四,处理速度快。1秒定律。最后这一点也是和传统的数据挖掘技术有着本质的不同。物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。 大数据技术是指从各种各样类型的巨量数据中,快速获得有价值信息的技术。解决大数据问题的核心是大数据技术。目前所说的”大数据”不仅指数据本身的规模,也包括采集数据的工具、平台和数据分析系统。大数据研发目的是发展大数据技术并将其应用到相关领域,通过解决巨量数据处理问题促进其突破性发展。因此,大数据时代带来的挑战不仅体现在如何处理巨量数据从中获取有价值的信息,也体现在如何加强大数据技术研发,抢占时代发展的前沿。

大数据作用 大数据时代到来,认同这一判断的人越来越多。那么大数据意味着什么,他到底会改变什么?仅仅从技术角度回答,已不足以解惑。大数据只是宾语,离开了人这个主语,它再大也没有意义。我们需要把大数据放在人的背景中加以透视,理解它作为时代变革力量的所以然。 变革组织的力量 随着具有语义网特征的数据基础设施和数据资源发展起来,组织的变革就越来越显得不可避免。大数据将推动网络结构产生无组织的组织力量。最先反映这种结构特点的,是各种各样去中心化的WEB2.0应用,如RSS、维基、博客等。 大数据之所以成为时代变革力量,在于它通过追随意义而获得智慧。 大数据处理 大数据处理数据时代理念的三大转变:要全体不要抽样,要效率不要绝对精确,要相关不要因果。 大数据处理的流程 具体的大数据处理方法确实有很多,但是根据笔者长时间的实践,总接了一个普遍适用的大数据处理流程,并且这个流程应该能够对大家理顺大数据的处理有所帮助。整个处理流程可以概括为四步,分别是采集、导入和预处理、统计和分析,最后是数据挖掘。 大数据处理之一:采集 大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。 在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的思考和设计。 大数据处理之二:导入/预处理 虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。 导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。

大数据处理之三:统计/分析 统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通地分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。 统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。 大数据处理之四:挖掘 与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于统计学习的SVM和用于分类的 NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。 整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
数据库
云数据库为企业提供了完善的关系型数据库、非关系型数据库、分析型数据库和数据库生态工具。您可以通过产品选择和组合搭建,轻松实现高可靠、高可用性、高性能等数据库需求。云数据库服务也可大幅减少您的运维工作量,更专注于业务发展,让企业一站式享受数据上云及分布式架构的技术红利!
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档