首页
学习
活动
专区
圈层
工具
发布
社区首页 >专栏 >考研(大学)数学 ​多元函数微分学(2)

考研(大学)数学 ​多元函数微分学(2)

作者头像
用户9628320
发布2022-11-23 16:33:42
发布2022-11-23 16:33:42
6090
举报

多元函数的微积分(2)

求偏导类型:

  1. 显函数求偏导 2.复合函数求偏导 3.隐函数存在定理以及隐函数求导类型 4.变换求偏导

1.显函数求偏导 知识点:显函数对一个求导将另外一个变量看成常数就可以。

\displaystyle z=\arctan\frac{x-y}{x+y}

,求

\displaystyle \frac{\partial z}{\partial x},\frac{\partial z}{\partial y}

\displaystyle\dfrac{\partial z}{\partial x}=\dfrac{1}{1+(\dfrac{x-y}{x+y})^2}\times\dfrac{2y}{(x+y)^2}=\dfrac{y}{x^2+y^2}

同理,

\displaystyle\frac{\partial z}{\partial y}=\dfrac{1}{1+(\dfrac{x-y}{x+y})^2}\times\dfrac{-2x}{(x+y)^2}=-\dfrac{x}{x^2+y^2}

z=e^{x^2+y^2}\sin xy

,求

\dfrac{\partial z}{\partial x}

\dfrac{\partial z}{\partial y}

\dfrac{\partial^2 z}{\partial x \partial y}

:依照上题,

\displaystyle\frac{\partial z}{\partial x}=2xe^{x^2+y^2}\sin xy+ye^{x^2+y^2}\cos xy=(2x\sin xy+y\cos xy)e^{x^2+y^2}
\displaystyle\frac{\partial z}{\partial y}=2ye^{x^2+y^2}\sin xy+xe^{x^2+y^2}\cos xy
\displaystyle\frac{\partial^2 z}{\partial x \partial y}=\frac{(\dfrac{\partial z}{\partial x})}{\partial y}=4xye^{x^2+y^2}\sin xy+4x^2e^{x^2+y^2}\cos xy+e^{x^2+y^2}\sin xy+2y^2e^{x^2+y^2}\sin xy-xye^{x^2+y^2}\sin xy

2.复合求导

e^{u+v^2}

,其中

u=\ln t,v=\sin t

,求

\dfrac{ dz}{dt}

:由定义知

\displaystyle\frac{dz}{dt}=\frac{dz}{dx}\cdot \frac{dx}{dt}+\frac{dz}{dy}\cdot\frac{dy}{dt}=e^{u+v^2}\cdot \frac{1}{t}+2ve^{v^2}\cdot \cos t

3.隐函数求导以及隐函数存在原理 有两种情况,单变量和多变量。

z=z(x,y)

是由函数

\ln\sqrt{x^2+^2+z^2}=xyz+1

确定,求

\dfrac{\partial z}{\partial x}

:两边同时对

x

进行求导,

\dfrac{1}{\sqrt{x^2+y^2+z^2}}\cdot\dfrac{2x+2z\dfrac{\partial z}{\partial x}}{\sqrt{x^2+y^2+z^2}}=yz+xy\dfrac{\partial z}{\partial x}

,整理得

\dfrac{\partial z}{\partial x}=\dfrac{yz(x^2+y^2+z^2)-x}{z-xy(x^2+y^2+z^2)}

z=f(x,y)

是由方程

z-y-x+xe^{z-x-y}=0

,求

dz

:显然题目求得是

z

的全微分,

dz=\dfrac{\partial z}{\partial x}dx+\dfrac{\partial z}{\partial y}dy

,可知求

z

x,y

的偏导数即可,两边对

x

求偏导。

\dfrac{\partial z}{\partial x}-1+e^{z-x-x}+xe^{z-y-x}\dfrac{\partial z}{\partial x}

,整理的

\dfrac{\partial z}{\partial x}=\dfrac{1+(x-1)e^{z-y-x}}{1+xe^{z-x-y}}=0

,同理对

y

求偏导,

\dfrac{\partial z}{\partial y}-1=0

,得

\dfrac{\partial z}{\partial y}=1

,故得

dz=\dfrac{1+(x-1)e^{z-y-x}}{1+xe^{z-y-x}}dx+dy

4.变换求偏导 将原函数换元之后进行求偏导

4.设

z=z(x,y)

满足:

\dfrac{\partial z}{\partial x}+\dfrac{\partial z}{\partial y}=\dfrac{x^2+y^2}{xy}

,且

u=x+y,v=xy

将方程化为

z

关于

u,v

的方程。

:首先根据

\displaystyle\frac{\partial z}{\partial x}=\frac{\partial z}{\partial u}\cdot\frac{\partial u}{\partial x}+\frac{\partial z}{\partial v}\cdot\frac{\partial v}{\partial x}=\frac{\partial z}{\partial u}+y\frac{\partial z}{\partial v}

,同理

\displaystyle\frac{\partial z}{\partial y}=\frac{\partial z}{\partial u}\cdot\frac{\partial u}{y}+\frac{\partial z}{\partial v}\cdot\frac{\partial v}{\partial y}=\frac{\partial z}{\partial u}+x\frac{\partial z}{\partial v}

,有等式,带入得

2\dfrac{\partial z}{\partial u}+(x+y)\dfrac{\partial z}{\partial v}=\dfrac{(x+y)^2-2xy}{xy}

,得

\displaystyle2\frac{\partial z}{\partial u}+\frac{\partial z}{\partial v}=\frac{u^2-2v}{v}

4.设变换

u=x-2y,v-x+ay

可以把方程

\displaystyle6\frac{\partial^2 z}{\partial x^2}+\frac{\partial^2 z }{\partial x^2}=0

简化为

\displaystyle\frac{\partial^2 z}{\partial x^2}=0

,其中

z

为二阶连续可偏导,求常数

a

:根据

u,v

看成变量的话,

z

x,y

的函数,则

\displaystyle\frac{\partial z}{\partial x}=\frac{\partial z}{\partial u}\cdot\frac{\partial u}{\partial v}+\frac{\partial z}{\partial v}\cdot\frac{\partial v}{\partial x}

\displaystyle\frac{\partial z}{\partial y}=\frac{\partial z}{\partial u}\cdot\frac{\partial u}{\partial y}+\frac{\partial z}{\partial v}\cdot\frac{\partial v}{\partial y}

,同理对

\displaystyle\frac{\partial^2 z}{\partial x^2}=\frac{\partial^2 z}{\partial u^2}\cdot \frac{\partial u}{\partial x}+\frac{\partial^2 z}{\partial u\partial v}\cdot\frac{\partial z}{\partial x}+\frac{\partial^2 z}{\partial v\partial u}\cdot\frac{\partial u}{\partial x}+\frac{\partial^2 z}{\partial v^2}\cdot\frac{\partial v}{\partial x}=\frac{\partial^2 z}{\partial u^2}+2\frac{\partial^2 z}{\partial u \partial v}+\frac{\partial^2 z}{\partial v^2}

\displaystyle\frac{\partial^2 z}{\partial x \partial y}=\frac{\partial^2 z}{\partial u^2}\frac{\partial u}{\partial y}+\frac{\partial ^2 z}{\partial u\partial v}\frac{\partial v}{\partial y}+\frac{\partial^2 z}{\partial v\partial u}\frac{\partial u}{y}+\frac{\partial^2 z}{\partial v^2}\frac{\partial v}{\partial y}=-2\frac{\partial^2 z}{\partial u^2}+(a-2)\frac{\partial^2 z}{\partial u\partial v}+a\frac{\partial^2 z}{\partial v^2}

\displaystyle\frac{\partial^2 z}{\partial y^2}=-\frac{\partial^2 z}{\partial u \partial v}\frac{\partial u}{\partial y}-2\frac{\partial^2 z}{\partial v\partial u}\frac{\partial v}{\partial y}+a\frac{\partial^2 z}{\partial v\partial u}\frac{\partial u}{\partial y}+a\frac{\partial^2 z}{\partial v^2}\frac{\partial v}{\partial y}=-4a\frac{\partial^2 z}{\partial u \partial v}+a^2\frac{\partial^2 z}{\partial v^2}

,带入原式,可以得到

\displaystyle(10+5a)\frac{\partial^2 z}{\partial u \partial v}+(6-a-a^2)\frac{\partial z^2}{\partial v^2}=0

,得到

10+5a\neq 0,6-a-a^2=0

,解得

a=2

作者:小熊

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-12-21,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 灰灰的数学与机械世界 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 多元函数的微积分(2)
    • 求偏导类型:
      • 1.显函数求偏导 知识点:显函数对一个求导将另外一个变量看成常数就可以。
      • 2.复合求导
      • 3.隐函数求导以及隐函数存在原理 有两种情况,单变量和多变量。
      • 4.变换求偏导 将原函数换元之后进行求偏导
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档