Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >IBM SPSS Modeler分类决策树C5.0模型分析空气污染物数据

IBM SPSS Modeler分类决策树C5.0模型分析空气污染物数据

原创
作者头像
拓端
发布于 2022-12-06 12:33:44
发布于 2022-12-06 12:33:44
5680
举报
文章被收录于专栏:拓端tecdat拓端tecdat

全文链接:http://tecdat.cn/?p=30752

原文出处:拓端数据部落公众号

如何通过方法有效的分析海量数据,并从其中找到有利的资讯已经成为一种趋势。而决策树算法是目前在进行数据分析时很常用的方法。本文将使用IBM SPSS Modeler进行实践,介绍决策树在空气污染预测领域的实践案例。

分类预测模型的构建流程,具体步骤如下:

(1)数据处理 :审核数据,过滤掉含有缺失值的数据记录。

(2)划分数据集,训练集70%,测试集30% 。

(3)构建模型时的参数设置 。

(4)构建模型:构建C5.0模型。

(5)结果评估,用测试集数据运行得到的运行结果,对模型采用命中率评估两个模型的预测效果。

加入表节点

读取数据

添加“抽样”节点

随机抽取70%的样本作为训练集

“C5.0”节点

生成的决策树模型,并对测试数据进行预测

得到测试数据的分类结果的准确度

预测分类结果

有88.1%的测试样本的预测值和实际值相符。

并且得到如下的决策树模型:

其中变量的重要性如下图所示:

从结果可以看到,首要污染物类型与AQI、NO2还有O3等变量有关。其中AQI对首要污染物类型的结果具有最重要的影响。

C5.0是在C4.5的基础上发展起来的。C5.0 算法是用信息增益(根节点的熵减去该拆分的熵)来度量拆分纯度的。第一次拆分某一字段,划分出相对应的样本子集。然后继续拆分这些样本子集,一般情况下使用的是另一字段进行拆分,一直循环这样一个过程,直到满足拆分终止条件。最后,若生成的树出现过度拟合的状况,则要修剪那些缺乏价值的样本子集。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
IBM SPSS Modeler分类决策树C5.0模型分析空气污染物数据|附代码数据
而决策树算法是目前在进行数据分析时很常用的方法。本文将使用IBM SPSS Modeler进行实践,介绍决策树在空气污染预测领域的实践案例。
拓端
2023/01/18
6100
【技术分享】决策树分类
所谓决策树,顾名思义,是一种树,一种依托于策略抉择而建立起来的树。机器学习中,决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。 树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,从根节点到叶节点所经历的路径对应一个判定测试序列。决策树仅有单一输出,若欲有复数输出,可以建立独立的决策树以处理不同输出。
腾讯云TI平台
2019/12/06
1.3K0
决策树1:初识决策树
决策树是一个非常有意思的模型,它的建模思路是尽可能模拟人做决策的过程。因此决策树几乎没有任何抽象,完全通过生成决策规则来解决分类和回归问题。因为它的运行机制能很直接地被翻译成人类语言,即使对建模领域完全不了解的非技术人员也能很好地理解它。因此在学术上被归为白盒模型(white box model)。
木东居士
2019/12/23
1.2K0
SPSS Modeler 介绍决策树
本文将通过 SPSS Modeler 介绍决策树 (Decision tree) 演算法于银行行销领域的应用实例。通过使用网路公开电销资料建立不同决策树模型,分析、解释并讨论模型结构,您将会了解各种决策树演算法及其不同之处,针对不同资料特征选择合适的决策树模型。 引言 随着资讯科技的演进,如何通过方法有效的分析海量数据,并从其中找到有利的规格或资讯已经成为一种趋势。而决策树演算法是目前在进行数据分析时很常用的分类方法,本文将使用 IBM SPSS Modeler 进行实作,介绍决策树 (Decision t
学到老
2018/03/16
1.7K0
SPSS Modeler 介绍决策树
决策树:最清晰明了的分类模型
决策树属于监督学习算法的一种,根据原始输入数据中的特征,构建一个树状模型来进行分类。比如探究早晨是否出去打网球的例子,输入数据如下
生信修炼手册
2021/03/10
6860
决策树:最清晰明了的分类模型
数据分享|Python、Spark SQL、MapReduce决策树、回归对车祸发生率影响因素可视化分析
根据已有的车祸数据信息,计算严重车祸发生率最高和最低的地区;并对车祸发生严重程度进行因素分析,判断哪些外界环境变量会影响车祸严重程度,分别有怎样的影响。
拓端
2023/11/17
3060
数据分享|Python、Spark  SQL、MapReduce决策树、回归对车祸发生率影响因素可视化分析
《机器学习》-- 第四章 决策树
正文共:8270 字 151 图 预计阅读时间:21 分钟 前文推送 MIT线性代数相关资源汇总 《机器学习》--第一章 《机器学习》--第二章 《机器学习》--第三章(上) 《机器学习》--第三章(下) 本文目录: 4.1 决策树基本流程 4.2 划分选择 4.3 剪枝处理 4.4 连续值与缺失值处理 4.5 决策树算法对比 第四章 决策树 4.1 决策树基本流程 决策树(decision tree,亦称为判定树)是一类常见的机器学习方法。 以二分类任务为例,我们希望从给定训练数据集学得一个模型用以对新
fireWang
2019/11/12
1.5K0
《机器学习》-- 第四章 决策树
决策树算法:ID3,C4.5,CART
对于基本树我将大致从以下四个方面介绍每一个算法:思想、划分标准、剪枝策略,优缺点。
zhangjiqun
2024/12/14
2030
决策树算法:ID3,C4.5,CART
决策树详解
总第79篇 01|背景: 我们在日常生活中经常会遇到一些选择需要去做一些选择,比如我们在找工作的时候每个人都希望能找到一个好的工作,但是公司那么多,工作种类那么多,什么样的工作才能算是好工作,这个时候就需要我们对众多的工作去做一个判断。 最常用的一种方法就是制定几个可以衡量工作好坏的指标,比如公司所处的行业是什么、应聘的岗位是什么、投资人是谁、薪酬待遇怎么样等等。评判一个工作好坏的指标有很多个,但是每一个指标对工作好坏这一结果的决策能力是不一样的,为了更好的对每一个指标的决策能力做出判断,我们引入一个可以
张俊红
2018/04/11
1.6K0
决策树详解
机器学习 | 决策树理论知识(一)
决策树模型呈树状结构,是以实例为基础的归纳学习,它的每个非叶子节点存储的是用于分类的特征,其分支代表这个特征在某个值上的输出,而每个叶子节点存储的就是最终的类别信息,可以认为是if-then规则的集合。简而言之,利用决策树进行预测的过程就是从根节点开始,根据样本的特征属性选择不同的分支,直到到达叶子结点,得出预测结果的过程。决策树学习采用的是自顶向下的递归方法,其基本思想是以信息熵为度量构造一棵熵值下降最快的树,到叶子节点处的熵值为零,此时每个叶节点中的实例都属于同一类。其主要优点是模型具有可读性、分类速度快、只需一次构建,可反复使用。
数据森麟
2020/11/23
8460
机器学习 | 决策树理论知识(一)
SPSS Modeler决策树分类模型分析商店顾客消费商品数据
随着大数据时代的来临,数据挖掘和分析在商业决策中扮演着越来越重要的角色。商店的顾客消费行为数据是商业决策的关键信息之一,通过对这些数据的深入分析,可以更好地理解顾客的消费习惯和偏好,从而优化商品销售策略,提高销售业绩。
拓端
2024/01/26
4030
SPSS Modeler决策树分类模型分析商店顾客消费商品数据
Come On!决策树算法!
机器学习在各个领域都有广泛的应用,特别在数据分析领域有着深远的影响。决策树是机器学习中最基础且应用最广泛的算法模型。本文介绍了机器学习的相关概念、常见的算法分类和决策树模型及应用。通过一个决策树案例,着重从特征选择、剪枝等方面描述决策树的构建,讨论并研究决策树模型评估准则。最后基于 R 语言和 SPSS 这两个工具,分别设计与实现了决策树模型的应用实例。 机器学习概念 机器学习 (Machine Learning) 是近 20 多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度
小莹莹
2018/04/20
9330
Come On!决策树算法!
决策树原理与应用:C5.0
分类预测指通过向现有数据的学习,使模型具备对未来新数据的预测能力。对于分类预测有这样几个重要,一是此模型使用的方法是归纳和提炼,而不是演绎。非数据挖掘类的软件的基本原理往往是演绎,软件能通过一系列的运算,用已知的公式对数据进行运算或统计。分类预测的基本原理是归纳,是学习,是发现新知识和新规律;二是指导性学习。所谓指导性学习,指数据中包含的变量不仅有预测性变量,还有目标变量;三是学习,模型通过归纳而不断学习。 事实上,预测包含目标变量为连续型变量的预测和目标变量为分在变量的分类预测。两者虽然都是预测,但结合决
机器学习AI算法工程
2018/03/13
4.6K0
决策树原理与应用:C5.0
Python机器学习从原理到实践(1):决策树分类算法
一、决策树原理 决策树是用样本的属性作为结点,用属性的取值作为分支的树结构。 决策树的根结点是所有样本中信息量最大的属性。树的中间结点是该结点为根的子树所包含的样本子集中信息量最大的属性。决策树的叶结点是样本的类别值。决策树是一种知识表示形式,它是对所有样本数据的高度概括决策树能准确地识别所有样本的类别,也能有效地识别新样本的类别。 决策树算法ID3的基本思想: 首先找出最有判别力的属性,把样例分成多个子集,每个子集又选择最有判别力的属性进行划分,一直进行到所有子集仅包含同一类型的数据为止。最后得到一棵决
机器学习AI算法工程
2018/03/13
1.3K0
Python机器学习从原理到实践(1):决策树分类算法
SPSS Modeler决策树和神经网络模型对淘宝店铺服装销量数据预测可视化|数据分享
在分析决策树算法的基础上,介绍了决策树神经网络和算法及其的构造,并使用该算法对淘宝店铺客户数据(查看文末了解数据免费获取方式)进行分类及对新客户类型预测,实现对商业数据中隐藏信息的挖掘,且对该挖掘模型进行了验证。
拓端
2025/01/10
1290
SPSS Modeler决策树和神经网络模型对淘宝店铺服装销量数据预测可视化|数据分享
决策树完全指南(下)
CART是一种DT算法,根据从属(或目标)变量是分类的还是数值的,生成二进制分类树或回归树。它以原始形式处理数据(不需要预处理),并且可以在同一DT的不同部分多次使用相同的变量,这可能会揭示变量集之间的复杂依赖关系。
AiTechYun
2019/05/21
5870
机器学习 | 决策树模型(一)理论
决策树(Decision tree)是一种基本的分类与回归方法,是一种非参数的有监督学习方法。
数据STUDIO
2021/06/24
1.5K0
决策树之ID3、C4.5、C5.0等五大算法及python实现
版权声明:博主原创文章,微信公众号:素质云笔记,转载请注明来源“素质云博客”,谢谢合作!! https://blog.csdn.net/sinat_26917383/article/details/47617801
悟乙己
2019/05/28
2.7K0
数据挖掘系列(6)决策树分类算法
 从这篇开始,我将介绍分类问题,主要介绍决策树算法、朴素贝叶斯、支持向量机、BP神经网络、懒惰学习算法、随机森林与自适应增强算法、分类模型选择和结果评价。总共7篇,欢迎关注和交流。   这篇先介绍分类问题的一些基本知识,然后主要讲述决策树算法的原理、实现,最后利用决策树算法做一个泰坦尼克号船员生存预测应用。 一、分类基本介绍   物以类聚,人以群分,分类问题只古以来就出现我们的生活中。分类是数据挖掘中一个重要的分支,在各方面都有着广泛的应用,如医学疾病判别、垃圾邮件过滤、垃圾短信拦截、客户分析等等。分类问题
小莹莹
2018/04/23
1.6K0
数据挖掘系列(6)决策树分类算法
决策树是如何工作的
作者:Rahul Saxena 译者:java达人 来源:http://dataaspirant.com/2017/01/30/how-decision-tree-algorithm-works/(点击文末阅读原文前往) 人工智能时代悄然而至,你可以继续安心地敲着代码,但必须对崭新的技术,陌生的算法保持高度的警惕和关注。 —— java达人 决策树算法属于监督学习算法系列。与其他监督学习算法不同,决策树算法也可用于求解关于回归和分类问题。 使用决策树的目的通常是创建一个训练模型,可以通过学习根据先验数
java达人
2018/01/31
1.4K0
决策树是如何工作的
相关推荐
IBM SPSS Modeler分类决策树C5.0模型分析空气污染物数据|附代码数据
更多 >
领券
💥开发者 MCP广场重磅上线!
精选全网热门MCP server,让你的AI更好用 🚀
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档