首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >多个任务超越moco v3!OPERA:监督学习和自监督统一的框架!

多个任务超越moco v3!OPERA:监督学习和自监督统一的框架!

作者头像
AI算法与图像处理
发布于 2022-12-11 04:52:27
发布于 2022-12-11 04:52:27
4850
举报

大家好,今天和大家分享一篇基于何恺明团队提出moco优化的算法。提出了一个监督学习和自监督统一的框架,表征能力更强,在多个下游任务上性能超越了 moco v3。

论文:https://arxiv.org/pdf/2210.05557.pdf

代码:https://github.com/wangck20/OPERA

创新点:

  • 基于深度学习中度量学习的监督(fully supervised,FSL)和自监督(self-supervised learning,SSL)学习的统一框架
  • 端到端可训练,在CNN和ViT上的各种任务性能都有所提高
  • 在DeiT-B上,对比学习框架的性能与MIM方法(如MAE)相当

论文:OPERA: Omni-Supervised Representation Learning with Hierarchical Supervisions

摘要

现代计算机视觉中的预训练-微调范式促进了自监督学习的成功,这往往比监督学习获得更好的可迁移性。然而,随着大量标记数据的可用性,一个自然的问题出现了:如何训练一个更好的模型,同时包含自监督和监督信号?在本文中,我们提出了具有层次监督 (OPERA) 的 Omni-suPERvised Representation 学习作为解决方案。我们从标记和未标记的数据中提供了统一的监督视角,并提出了一个监督和自监督学习的统一框架。我们为每个图像提取一组分层代理表示,并对相应的代理表示进行自我和完全监督。卷积神经网络和视觉转换器的大量实验证明了 OPERA 在图像分类、分割和对象检测方面的优越性。

方案

本文首先提出了相似学习框架下自监督学习(SSL)和全监督学习(FSL)的统一观点。然后,建议 OPERA 对相应的层次表示施加层次监督,以获得更好的可转移性。最后,详细说明了提议的 OPERA 框架的实例化。

1、 相似性学习的统一框架

通常,FSL和SSL在监督形式和优化目标上都有所不同。为了统一两者,这里提供了一个统一的相似性学习框架,包括两个训练目标:

2、 分层表示的分层监督

上面的推导表明这两个训练信号是矛盾的,可能会相互抵消。 如果我们对监督学习和自监督学习采用类似的损失函数,这是存在问题的。

现有方法(Nayman 等人,2022;Wei 等人,2022;Wang 等人,2022c)通过随后施加两个训练信号来解决这个问题。他们倾向于首先获得一个自监督的预训练模型,然后使用监督学习对其进行调整。不同的是,我们提出了一种更有效的方法自适应地平衡这两个权重,以便我们可以同时使用它们:

其中,α和β是可依赖于y和p以获得更大灵活性的调制因子。

3、 全方位监督表示学习

为了有效地结合自监督和监督学习来学习表示法,OPERA进一步分层提取一组代理表示法来接收相应的训练信号。

实验结果对比

今天的分享就到这里,大家喜欢的话,可以多多支持,感谢!

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-10-13,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AI算法与图像处理 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档