本文使用机器学习建模对 FIFA 2022世界杯结果进行了预测,赛后将其与真实结果进行比较,可以看出:小组赛到1/4决赛的预测准确率很高,半决赛和决赛的预测准确率为0,冠亚季军无一预测准确。
💡 作者:韩信子@ShowMeAI 📘 数据分析实战系列:https://www.showmeai.tech/tutorials/40 📘 机器学习实战系列:https://www.showmeai.tech/tutorials/41 📘 本文地址:https://www.showmeai.tech/article-detail/400 📢 声明:版权所有,转载请联系平台与作者并注明出处 📢 收藏ShowMeAI查看更多精彩内容
FIFA 2022世界杯已经落幕!关于哪支球队将赢得冠军的讨论,也有了明确答案。恭喜梅西!恭喜阿根廷!赛前 ShowMeAI 使用数据科学和机器学习的技能,开发一个基于历史数据的模型来预测 FIFA 2022 世界杯比赛结果。现在尘埃落定,让我们一起看看机器学习的预测与实际比赛结果,有多大大大大的差距吧!
对比下方官网发布的赛程结果汇总, ShowMeAI 将机器学习的预测结果可视化后与之进行了比较。
可以看到,从小组赛开始直到1/4决赛,机器学习模型预测的正确率都是比较高的。然而从半决赛开始,模型预测准确度急转直下,不论是参赛球队还是输赢判断都降为0,冠亚季军无一预测正确。
但这也正是足球的魅力所在。正是竞技体育中存在的不确定性,让我们更深刻地感受到了奋斗、勇气、英雄和梦想的含义。(下文是赛前完整的建模过程,一起来看看吧!)
我们先为机器学习建模准备数据,我们需要一些数据来体现各支球队的表现。我们本次用到的是FIFA 相关的数据:🏆1872到2022历史比赛数据 和 🏆FIFA 排名数据,数据可以直接在Kaggle平台获取,也可以在ShowMeAI的百度网盘获取。
🏆 实战数据集下载(百度网盘):公众号『ShowMeAI研究中心』回复『实战』,或者点击 这里 获取本文 [35]基于机器学习的2022世界杯预测实战 『FIFA 2022数据集』
⭐ ShowMeAI官方GitHub:https://github.com/ShowMeAI-Hub
哪些特征会影响足球比赛的胜负结果?这个开放的问题涉及很多特征维度:从选定的球员到当天球场的温度。我们简单一点处理,仅使用参与比赛的每个团队的过去统计数据构建一个数据集,优先考虑可以通过简单方式收集的可量化统计数据,例如进球数、平均排名、赢得的分数等。这些数据可以在我们上面谈到的两个数据集中整合得到。
另外,我们仅分析 2018 之后的数据,这样我们可以更聚焦在本届世界杯备战这几年球队队员表现的变化。数据构建代码如下:
import pandas as pd
import re
df = pd.read_csv("results.csv") #games between national teams
df["date"] = pd.to_datetime(df["date"])
df = df[(df["date"] >= "2018-8-1")].reset_index(drop=True) #games at the 2022 wc cycle
df_wc = df #pre-wc outcomes
rank = pd.read_csv("fifa_ranking-2022-10-06.csv") #rankings
rank["rank_date"] = pd.to_datetime(rank["rank_date"])
rank = rank[(rank["rank_date"] >= "2018-8-1")].reset_index(drop=True) #selecting games from the 2022 wc cycle
rank["country_full"] = rank["country_full"].str.replace("IR Iran", "Iran").str.replace("Korea Republic", "South Korea").str.replace("USA", "United States") #ajustando nomes de algumas seleções
rank = rank.set_index(['rank_date']).groupby(['country_full'], group_keys=False).resample('D').first().fillna(method='ffill').reset_index()
rank_wc = rank #dataframe with rankings
#Making the merge
df_wc_ranked = df_wc.merge(rank[["country_full", "total_points", "previous_points", "rank", "rank_change", "rank_date"]], left_on=["date", "home_team"], right_on=["rank_date", "country_full"]).drop(["rank_date", "country_full"], axis=1)
df_wc_ranked = df_wc_ranked.merge(rank[["country_full", "total_points", "previous_points", "rank", "rank_change", "rank_date"]], left_on=["date", "away_team"], right_on=["rank_date", "country_full"], suffixes=("_home", "_away")).drop(["rank_date", "country_full"], axis=1)
最终的数据集结果如下:
对特征工程细节感兴趣的同学,可以阅读ShowMeAI的详解文章,学习理论知识与实战方法:
准备好数据之后,我们就可以进行特征工程了,我们希望从原始数据中构建有预测能力的特征信息,我们这里采用了如下特征:
我们选取以上特征的原因是:
df = df_wc_ranked
def result_finder(home, away):
if home > away:
return pd.Series([0, 3, 0])
if home < away:
return pd.Series([1, 0, 3])
else:
return pd.Series([2, 1, 1])
results = df.apply(lambda x: result_finder(x["home_score"], x["away_score"]), axis=1)
df[["result", "home_team_points", "away_team_points"]] = results
df["rank_dif"] = df["rank_home"] - df["rank_away"]
df["sg"] = df["home_score"] - df["away_score"]
df["points_home_by_rank"] = df["home_team_points"]/df["rank_away"]
df["points_away_by_rank"] = df["away_team_points"]/df["rank_home"]
home_team = df[["date", "home_team", "home_score", "away_score", "rank_home", "rank_away","rank_change_home", "total_points_home", "result", "rank_dif", "points_home_by_rank", "home_team_points"]]
away_team = df[["date", "away_team", "away_score", "home_score", "rank_away", "rank_home","rank_change_away", "total_points_away", "result", "rank_dif", "points_away_by_rank", "away_team_points"]]
home_team.columns = [h.replace("home_", "").replace("_home", "").replace("away_", "suf_").replace("_away", "_suf") for h in home_team.columns]
away_team.columns = [a.replace("away_", "").replace("_away", "").replace("home_", "suf_").replace("_home", "_suf") for a in away_team.columns]
team_stats = home_team.append(away_team)
team_stats_raw = team_stats.copy()
stats_val = []
for index, row in team_stats.iterrows():
team = row["team"]
date = row["date"]
past_games = team_stats.loc[(team_stats["team"] == team) & (team_stats["date"] < date)].sort_values(by=['date'], ascending=False)
last5 = past_games.head(5)
goals = past_games["score"].mean()
goals_l5 = last5["score"].mean()
goals_suf = past_games["suf_score"].mean()
goals_suf_l5 = last5["suf_score"].mean()
rank = past_games["rank_suf"].mean()
rank_l5 = last5["rank_suf"].mean()
if len(last5) > 0:
points = past_games["total_points"].values[0] - past_games["total_points"].values[-1]#qtd de pontos ganhos
points_l5 = last5["total_points"].values[0] - last5["total_points"].values[-1]
else:
points = 0
points_l5 = 0
gp = past_games["team_points"].mean()
gp_l5 = last5["team_points"].mean()
gp_rank = past_games["points_by_rank"].mean()
gp_rank_l5 = last5["points_by_rank"].mean()
stats_val.append([goals, goals_l5, goals_suf, goals_suf_l5, rank, rank_l5, points, points_l5, gp, gp_l5, gp_rank, gp_rank_l5])
stats_cols = ["goals_mean", "goals_mean_l5", "goals_suf_mean", "goals_suf_mean_l5", "rank_mean", "rank_mean_l5", "points_mean", "points_mean_l5", "game_points_mean", "game_points_mean_l5", "game_points_rank_mean", "game_points_rank_mean_l5"]
stats_df = pd.DataFrame(stats_val, columns=stats_cols)
full_df = pd.concat([team_stats.reset_index(drop=True), stats_df], axis=1, ignore_index=False)
home_team_stats = full_df.iloc[:int(full_df.shape[0]/2),:]
away_team_stats = full_df.iloc[int(full_df.shape[0]/2):,:]
home_team_stats = home_team_stats[home_team_stats.columns[-12:]]
away_team_stats = away_team_stats[away_team_stats.columns[-12:]]
home_team_stats.columns = ['home_'+str(col) for col in home_team_stats.columns]
away_team_stats.columns = ['away_'+str(col) for col in away_team_stats.columns]
match_stats = pd.concat([home_team_stats, away_team_stats.reset_index(drop=True)], axis=1, ignore_index=False)
full_df = pd.concat([df, match_stats.reset_index(drop=True)], axis=1, ignore_index=False)
def find_friendly(x):
if x == "Friendly":
return 1
else: return 0
full_df["is_friendly"] = full_df["tournament"].apply(lambda x: find_friendly(x))
full_df = pd.get_dummies(full_df, columns=["is_friendly"])
base_df = full_df[["date", "home_team", "away_team", "rank_home", "rank_away","home_score", "away_score","result", "rank_dif", "rank_change_home", "rank_change_away", 'home_goals_mean',
'home_goals_mean_l5', 'home_goals_suf_mean', 'home_goals_suf_mean_l5',
'home_rank_mean', 'home_rank_mean_l5', 'home_points_mean',
'home_points_mean_l5', 'away_goals_mean', 'away_goals_mean_l5',
'away_goals_suf_mean', 'away_goals_suf_mean_l5', 'away_rank_mean',
'away_rank_mean_l5', 'away_points_mean', 'away_points_mean_l5','home_game_points_mean', 'home_game_points_mean_l5',
'home_game_points_rank_mean', 'home_game_points_rank_mean_l5','away_game_points_mean',
'away_game_points_mean_l5', 'away_game_points_rank_mean',
'away_game_points_rank_mean_l5',
'is_friendly_0', 'is_friendly_1']]
base_df.tail()
在建模之前,我们对于数据做一点分析。比赛的结果有3种情况:赢、平、输,但作为 3 类分类问题进行建模,类别不均衡是一个很大的问题,且评估也会有点麻烦,我们做一点合并和调整:汇总到「主队赢」和「主队平/输」2种情况。
关于数据分析与可视化的详细教程,可以阅读ShowMeAI关于的数据分析系列教程与文章
我们按照不同的结果(赢/输平)来对不同的特征维度进行分布分析,我们这里使用小提琴图。
base_df_no_fg = base_df.dropna()
df = base_df_no_fg
def no_draw(x):
if x == 2:
return 1
else:
return x
df["target"] = df["result"].apply(lambda x: no_draw(x))
import matplotlib.pyplot as plt
data1 = df[list(df.columns[8:20].values) + ["target"]]
scaled = (data1[:-1] - data1[:-1].mean()) / data1[:-1].std()
scaled["target"] = data1["target"]
violin1 = pd.melt(scaled,id_vars="target", var_name="features", value_name="value")
plt.figure(figsize=(15,10))
sns.violinplot(x="features", y="value", hue="target", data=violin1,split=True, inner="quart")
plt.xticks(rotation=90)
plt.show()
data2 = df[df.columns[20:]]
scaled = (data2[:-1] - data2[:-1].mean()) / data2[:-1].std()
scaled["target"] = data2["target"]
violin2 = pd.melt(scaled,id_vars="target", var_name="features", value_name="value")
plt.figure(figsize=(15,10))
sns.violinplot(x="features", y="value", hue="target", data=violin2,split=True, inner="quart")
plt.xticks(rotation=90)
plt.show()
对于第一组数据,目前的特征中只有rank_dif
(两队排名的差值)对 target classes 有影响。因此,我们考虑创建更多差异特征,这类特征似乎是很强的特征信息,构建如下特征:
dif = df.copy()
dif.loc[:, "goals_dif"] = dif["home_goals_mean"] - dif["away_goals_mean"]
dif.loc[:, "goals_dif_l5"] = dif["home_goals_mean_l5"] - dif["away_goals_mean_l5"]
dif.loc[:, "goals_suf_dif"] = dif["home_goals_suf_mean"] - dif["away_goals_suf_mean"]
dif.loc[:, "goals_suf_dif_l5"] = dif["home_goals_suf_mean_l5"] - dif["away_goals_suf_mean_l5"]
dif.loc[:, "goals_made_suf_dif"] = dif["home_goals_mean"] - dif["away_goals_suf_mean"]
dif.loc[:, "goals_made_suf_dif_l5"] = dif["home_goals_mean_l5"] - dif["away_goals_suf_mean_l5"]
dif.loc[:, "goals_suf_made_dif"] = dif["home_goals_suf_mean"] - dif["away_goals_mean"]
dif.loc[:, "goals_suf_made_dif_l5"] = dif["home_goals_suf_mean_l5"] - dif["away_goals_mean_l5"]
我们再次使用小提琴图分析。
data_difs = dif.iloc[:, -8:]
scaled = (data_difs - data_difs.mean()) / data_difs.std()
scaled["target"] = data2["target"]
violin = pd.melt(scaled,id_vars="target", var_name="features", value_name="value")
plt.figure(figsize=(10,10))
sns.violinplot(x="features", y="value", hue="target", data=violin,split=True, inner="quart")
plt.xticks(rotation=90)
plt.show()
进球差异和失球差异特征对目标有很好的区分度。然而,球队进球与对手进球之间差异的特征没有影响。那我们再考虑:
此外,我们还可以计算积分的差异、排名位置的差异以及排名所获得的积分差异。而且,为了衡量对手的水平,我们可以考虑:排名所造成的进球与失球之间的差异。
dif.loc[:, "dif_points"] = dif["home_game_points_mean"] - dif["away_game_points_mean"]
dif.loc[:, "dif_points_l5"] = dif["home_game_points_mean_l5"] - dif["away_game_points_mean_l5"]
dif.loc[:, "dif_points_rank"] = dif["home_game_points_rank_mean"] - dif["away_game_points_rank_mean"]
dif.loc[:, "dif_points_rank_l5"] = dif["home_game_points_rank_mean_l5"] - dif["away_game_points_rank_mean_l5"]
dif.loc[:, "dif_rank_agst"] = dif["home_rank_mean"] - dif["away_rank_mean"]
dif.loc[:, "dif_rank_agst_l5"] = dif["home_rank_mean_l5"] - dif["away_rank_mean_l5"]
dif.loc[:, "goals_per_ranking_dif"] = (dif["home_goals_mean"] / dif["home_rank_mean"]) - (dif["away_goals_mean"] / dif["away_rank_mean"])
dif.loc[:, "goals_per_ranking_suf_dif"] = (dif["home_goals_suf_mean"] / dif["home_rank_mean"]) - (dif["away_goals_suf_mean"] / dif["away_rank_mean"])
dif.loc[:, "goals_per_ranking_dif_l5"] = (dif["home_goals_mean_l5"] / dif["home_rank_mean"]) - (dif["away_goals_mean_l5"] / dif["away_rank_mean"])
dif.loc[:, "goals_per_ranking_suf_dif_l5"] = (dif["home_goals_suf_mean_l5"] / dif["home_rank_mean"]) - (dif["away_goals_suf_mean_l5"] / dif["away_rank_mean"])
我们用提琴图和箱线图对数据进行分析:
data_difs = dif.iloc[:, -10:]
scaled = (data_difs - data_difs.mean()) / data_difs.std()
scaled["target"] = data2["target"]
violin = pd.melt(scaled,id_vars="target", var_name="features", value_name="value")
plt.figure(figsize=(15,10))
sns.violinplot(x="features", y="value", hue="target", data=violin,split=True, inner="quart")
plt.xticks(rotation=90)
plt.show()
plt.figure(figsize=(15,10))
sns.boxplot(x="features", y="value", hue="target", data=violin)
plt.xticks(rotation=90)
plt.show()
积分差异、排名的进球差异、排名的积分差异是很好的特征。但是,我们有一些特征之间的相关度非常高,我们通过jointplot
进行联合分布分析:
sns.jointplot(data = data_difs, x = 'dif_rank_agst', y = 'dif_rank_agst_l5', kind="reg")
plt.show()
sns.jointplot(data = data_difs, x = 'goals_per_ranking_dif', y = 'goals_per_ranking_dif_l5', kind="reg")
plt.show()
sns.jointplot(data = data_difs, x = 'dif_points_rank', y = 'dif_points_rank_l5', kind="reg")
plt.show()
sns.jointplot(data = data_difs, x = 'dif_points', y = 'dif_points_l5', kind="reg")
plt.show()
分析相关性可以看出,我们选择其中的1组特征就好,这里我们选择了考虑全周期的版本。最后保留的特征有下面这些:
rank_dif
)goals_dif
/ goals_dif_l5
)goals_suf_dif
/ goals_suf_dif_l5
)dif_rank_agst
/ dif_rank_agst_l5
)goals_per_ranking_dif
)dif_points_rank
/ dif_points_rank_l5
)is_friendly
)这样,我们最终的数据集如下,包含后续机器学习模型所需的全部特征。
def create_db(df):
columns = ["home_team", "away_team", "target", "rank_dif", "home_goals_mean", "home_rank_mean", "away_goals_mean", "away_rank_mean", "home_rank_mean_l5", "away_rank_mean_l5", "home_goals_suf_mean", "away_goals_suf_mean", "home_goals_mean_l5", "away_goals_mean_l5", "home_goals_suf_mean_l5", "away_goals_suf_mean_l5", "home_game_points_rank_mean", "home_game_points_rank_mean_l5", "away_game_points_rank_mean", "away_game_points_rank_mean_l5","is_friendly_0", "is_friendly_1"]
base = df.loc[:, columns]
base.loc[:, "goals_dif"] = base["home_goals_mean"] - base["away_goals_mean"]
base.loc[:, "goals_dif_l5"] = base["home_goals_mean_l5"] - base["away_goals_mean_l5"]
base.loc[:, "goals_suf_dif"] = base["home_goals_suf_mean"] - base["away_goals_suf_mean"]
base.loc[:, "goals_suf_dif_l5"] = base["home_goals_suf_mean_l5"] - base["away_goals_suf_mean_l5"]
base.loc[:, "goals_per_ranking_dif"] = (base["home_goals_mean"] / base["home_rank_mean"]) - (base["away_goals_mean"] / base["away_rank_mean"])
base.loc[:, "dif_rank_agst"] = base["home_rank_mean"] - base["away_rank_mean"]
base.loc[:, "dif_rank_agst_l5"] = base["home_rank_mean_l5"] - base["away_rank_mean_l5"]
base.loc[:, "dif_points_rank"] = base["home_game_points_rank_mean"] - base["away_game_points_rank_mean"]
base.loc[:, "dif_points_rank_l5"] = base["home_game_points_rank_mean_l5"] - base["away_game_points_rank_mean_l5"]
model_df = base[["home_team", "away_team", "target", "rank_dif", "goals_dif", "goals_dif_l5", "goals_suf_dif", "goals_suf_dif_l5", "goals_per_ranking_dif", "dif_rank_agst", "dif_rank_agst_l5", "dif_points_rank", "dif_points_rank_l5", "is_friendly_0", "is_friendly_1"]]
return model_df
model_db = create_db(df)
model_db
关于机器学习建模与调优的相关知识与实战方法,可以查看ShowMeAI的系列教程与文章
下面我们就可以开始建模了,我们使用两个模型 Random Forest 和 Gradient Boosting 来建模,进行效果对比。对于模型调参,我们使用 SkLearn 的 📘GridSearchCV 进行参数优化,挑选最佳模型。
import numpy as np
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.model_selection import train_test_split, GridSearchCV
#separating the target from the features
X = model_db.iloc[:, 3:]
y = model_db[["target"]]
#dividing the database
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size= 0.2, random_state=1)
gb = GradientBoostingClassifier(random_state=5)
params = {"learning_rate": [0.01, 0.1, 0.5],
"min_samples_split": [5, 10],
"min_samples_leaf": [3, 5],
"max_depth":[3,5,10],
"max_features":["sqrt"],
"n_estimators":[100, 200]
}
gb_cv = GridSearchCV(gb, params, cv = 3, n_jobs = -1, verbose = False)
gb_cv.fit(X_train.values, np.ravel(y_train))
#getting the best model
gb = gb_cv.best_estimator_
我们对随机森林也进行调参和优化:
params_rf = {"max_depth": [20],
"min_samples_split": [5, 10],
"max_leaf_nodes": [175, 200],
"min_samples_leaf": [5, 10],
"n_estimators": [250],
"max_features": ["sqrt"],
}
rf = RandomForestClassifier(random_state=1)
rf_cv = GridSearchCV(rf, params_rf, cv = 3, n_jobs = -1, verbose = False)
rf_cv.fit(X_train.values, np.ravel(y_train))
rf = rf_cv.best_estimator_
输出结果:
GridSearchCV(cv=3, estimator=RandomForestClassifier(random_state=1), n_jobs=-1,
param_grid={'max_depth': [20], 'max_features': ['sqrt'],
'max_leaf_nodes': [175, 200],
'min_samples_leaf': [5, 10],
'min_samples_split': [5, 10], 'n_estimators': [250]},
verbose=False)
我们使用混淆矩阵和ROC-AUC曲线进行了模型分析,结果是:
from sklearn.metrics import confusion_matrix, roc_curve, roc_auc_score
def analyze(model):
fpr, tpr, _ = roc_curve(y_test, model.predict_proba(X_test.values)[:,1]) #test AUC
plt.figure(figsize=(15,10))
plt.plot([0, 1], [0, 1], 'k--')
plt.plot(fpr, tpr, label="test")
fpr_train, tpr_train, _ = roc_curve(y_train, model.predict_proba(X_train.values)[:,1]) #train AUC
plt.plot(fpr_train, tpr_train, label="train")
auc_test = roc_auc_score(y_test, model.predict_proba(X_test.values)[:,1])
auc_train = roc_auc_score(y_train, model.predict_proba(X_train.values)[:,1])
plt.legend()
plt.title('AUC score is %.2f on test and %.2f on training'%(auc_test, auc_train))
plt.show()
plt.figure(figsize=(15, 10))
cm = confusion_matrix(y_test, model.predict(X_test.values))
sns.heatmap(cm, annot=True, fmt="d")
analyze(gb)
对随机森林进行分析:
analyze(rf)
随机森林模型的性能稍好,但结果上有一点过拟合。分析 Gradient Boosting 模型的 AUC-ROC,它风险较低,我们最终选择它。
下面我们基于这个模型将预测世界杯结果。我们先使用了 📘Pandas的read_html 方法获取参加世界杯的球队名单。
dfs = pd.read_html(r"https://en.wikipedia.org/wiki/2022_FIFA_World_Cup#Teams")
from collections.abc import Iterable
for i in range(len(dfs)):
df = dfs[i]
cols = list(df.columns.values)
if isinstance(cols[0], Iterable):
if any("Tie-breaking criteria" in c for c in cols):
start_pos = i+1
if any("Match 46" in c for c in cols):
end_pos = i+1
matches = []
groups = ["A", "B", "C", "D", "E", "F", "G", "H"]
group_count = 0
table = {}
#TABLE -> TEAM, POINTS, WIN PROBS (CRITERIO DE DESEMPATE)
table[groups[group_count]] = [[a.split(" ")[0], 0, []] for a in list(dfs[start_pos].iloc[:, 1].values)]
for i in range(start_pos+1, end_pos, 1):
if len(dfs[i].columns) == 3:
team_1 = dfs[i].columns.values[0]
team_2 = dfs[i].columns.values[-1]
matches.append((groups[group_count], team_1, team_2))
else:
group_count+=1
table[groups[group_count]] = [[a, 0, []] for a in list(dfs[i].iloc[:, 1].values)]
table
matches[:10]
我们的模型对主队获胜和客队获胜/平局进行了分类。那这里面又怎么区分平局呢? 我们处理的办法如下,我们以两种形式进行预测:
如果两个预测都是 A 队或 B 队获胜,则直接判定该队获胜。如果一次预测A队获胜,而第二次预测B队获胜,则判定结果为平局。下面我们构建代码来逐场模拟比赛,计算分数。
def find_stats(team_1):
#team_1 = "Qatar"
past_games = team_stats_raw[(team_stats_raw["team"] == team_1)].sort_values("date")
last5 = team_stats_raw[(team_stats_raw["team"] == team_1)].sort_values("date").tail(5)
team_1_rank = past_games["rank"].values[-1]
team_1_goals = past_games.score.mean()
team_1_goals_l5 = last5.score.mean()
team_1_goals_suf = past_games.suf_score.mean()
team_1_goals_suf_l5 = last5.suf_score.mean()
team_1_rank_suf = past_games.rank_suf.mean()
team_1_rank_suf_l5 = last5.rank_suf.mean()
team_1_gp_rank = past_games.points_by_rank.mean()
team_1_gp_rank_l5 = last5.points_by_rank.mean()
return [team_1_rank, team_1_goals, team_1_goals_l5, team_1_goals_suf, team_1_goals_suf_l5, team_1_rank_suf, team_1_rank_suf_l5, team_1_gp_rank, team_1_gp_rank_l5]
def find_features(team_1, team_2):
rank_dif = team_1[0] - team_2[0]
goals_dif = team_1[1] - team_2[1]
goals_dif_l5 = team_1[2] - team_2[2]
goals_suf_dif = team_1[3] - team_2[3]
goals_suf_dif_l5 = team_1[4] - team_2[4]
goals_per_ranking_dif = (team_1[1]/team_1[5]) - (team_2[1]/team_2[5])
dif_rank_agst = team_1[5] - team_2[5]
dif_rank_agst_l5 = team_1[6] - team_2[6]
dif_gp_rank = team_1[7] - team_2[7]
dif_gp_rank_l5 = team_1[8] - team_2[8]
return [rank_dif, goals_dif, goals_dif_l5, goals_suf_dif, goals_suf_dif_l5, goals_per_ranking_dif, dif_rank_agst, dif_rank_agst_l5, dif_gp_rank, dif_gp_rank_l5, 1, 0]
advanced_group = []
last_group = ""
for k in table.keys():
for t in table[k]:
t[1] = 0
t[2] = []
for teams in matches:
draw = False
team_1 = find_stats(teams[1])
team_2 = find_stats(teams[2])
features_g1 = find_features(team_1, team_2)
features_g2 = find_features(team_2, team_1)
probs_g1 = gb.predict_proba([features_g1])
probs_g2 = gb.predict_proba([features_g2])
team_1_prob_g1 = probs_g1[0][0]
team_1_prob_g2 = probs_g2[0][1]
team_2_prob_g1 = probs_g1[0][1]
team_2_prob_g2 = probs_g2[0][0]
team_1_prob = (probs_g1[0][0] + probs_g2[0][1])/2
team_2_prob = (probs_g2[0][0] + probs_g1[0][1])/2
if ((team_1_prob_g1 > team_2_prob_g1) & (team_2_prob_g2 > team_1_prob_g2)) | ((team_1_prob_g1 < team_2_prob_g1) & (team_2_prob_g2 < team_1_prob_g2)):
draw=True
for i in table[teams[0]]:
if i[0] == teams[1] or i[0] == teams[2]:
i[1] += 1
elif team_1_prob > team_2_prob:
winner = teams[1]
winner_proba = team_1_prob
for i in table[teams[0]]:
if i[0] == teams[1]:
i[1] += 3
elif team_2_prob > team_1_prob:
winner = teams[2]
winner_proba = team_2_prob
for i in table[teams[0]]:
if i[0] == teams[2]:
i[1] += 3
for i in table[teams[0]]: #adding criterio de desempate (probs por jogo)
if i[0] == teams[1]:
i[2].append(team_1_prob)
if i[0] == teams[2]:
i[2].append(team_2_prob)
if last_group != teams[0]:
if last_group != "":
print("\n")
print("Group %s advanced: "%(last_group))
for i in table[last_group]: #adding crieterio de desempate
i[2] = np.mean(i[2])
final_points = table[last_group]
final_table = sorted(final_points, key=itemgetter(1, 2), reverse = True)
advanced_group.append([final_table[0][0], final_table[1][0]])
for i in final_table:
print("%s -------- %d"%(i[0], i[1]))
print("\n")
print("-"*10+" Starting Analysis for Group %s "%(teams[0])+"-"*10)
if draw == False:
print("Group %s - %s vs. %s: Winner %s with %.2f probability"%(teams[0], teams[1], teams[2], winner, winner_proba))
else:
print("Group %s - %s vs. %s: Draw"%(teams[0], teams[1], teams[2]))
last_group = teams[0]
print("\n")
print("Group %s advanced: "%(last_group))
for i in table[last_group]: #adding crieterio de desempate
i[2] = np.mean(i[2])
final_points = table[last_group]
final_table = sorted(final_points, key=itemgetter(1, 2), reverse = True)
advanced_group.append([final_table[0][0], final_table[1][0]])
for i in final_table:
print("%s -------- %d"%(i[0], i[1]))
结果是:
---------- Starting Analysis for Group A ----------
Group A - Qatar vs. Ecuador: Winner Ecuador with 0.62 probability
Group A - Senegal vs. Netherlands: Winner Netherlands with 0.62 probability
Group A - Qatar vs. Senegal: Winner Senegal with 0.60 probability
Group A - Netherlands vs. Ecuador: Winner Netherlands with 0.73 probability
Group A - Ecuador vs. Senegal: Draw
Group A - Netherlands vs. Qatar: Winner Netherlands with 0.78 probability
Group A advanced:
Netherlands -------- 9
Senegal -------- 4
Ecuador -------- 4
Qatar -------- 0
---------- Starting Analysis for Group B ----------
Group B - England vs. Iran: Winner England with 0.62 probability
Group B - United States vs. Wales: Draw
Group B - Wales vs. Iran: Draw
Group B - England vs. United States: Winner England with 0.61 probability
Group B - Wales vs. England: Winner England with 0.64 probability
Group B - Iran vs. United States: Winner United States with 0.58 probability
Group B advanced:
England -------- 9
United States -------- 4
Wales -------- 2
Iran -------- 1
---------- Starting Analysis for Group C ----------
Group C - Argentina vs. Saudi Arabia: Winner Argentina with 0.79 probability
Group C - Mexico vs. Poland: Draw
Group C - Poland vs. Saudi Arabia: Winner Poland with 0.70 probability
Group C - Argentina vs. Mexico: Winner Argentina with 0.67 probability
Group C - Poland vs. Argentina: Winner Argentina with 0.71 probability
Group C - Saudi Arabia vs. Mexico: Winner Mexico with 0.71 probability
Group C advanced:
Argentina -------- 9
Poland -------- 4
Mexico -------- 4
Saudi Arabia -------- 0
---------- Starting Analysis for Group D ----------
Group D - Denmark vs. Tunisia: Winner Denmark with 0.68 probability
Group D - France vs. Australia: Winner France with 0.71 probability
Group D - Tunisia vs. Australia: Draw
Group D - France vs. Denmark: Draw
Group D - Australia vs. Denmark: Winner Denmark with 0.71 probability
Group D - Tunisia vs. France: Winner France with 0.69 probability
Group D advanced:
France -------- 7
Denmark -------- 7
Tunisia -------- 1
Australia -------- 1
---------- Starting Analysis for Group E ----------
Group E - Germany vs. Japan: Winner Germany with 0.62 probability
Group E - Spain vs. Costa Rica: Winner Spain with 0.76 probability
Group E - Japan vs. Costa Rica: Winner Japan with 0.63 probability
Group E - Spain vs. Germany: Draw
Group E - Japan vs. Spain: Winner Spain with 0.67 probability
Group E - Costa Rica vs. Germany: Winner Germany with 0.65 probability
Group E advanced:
Spain -------- 7
Germany -------- 7
Japan -------- 3
Costa Rica -------- 0
---------- Starting Analysis for Group F ----------
Group F - Morocco vs. Croatia: Winner Croatia with 0.58 probability
Group F - Belgium vs. Canada: Winner Belgium with 0.75 probability
Group F - Belgium vs. Morocco: Winner Belgium with 0.67 probability
Group F - Croatia vs. Canada: Winner Croatia with 0.64 probability
Group F - Croatia vs. Belgium: Winner Belgium with 0.64 probability
Group F - Canada vs. Morocco: Draw
Group F advanced:
Belgium -------- 9
Croatia -------- 6
Morocco -------- 1
Canada -------- 1
---------- Starting Analysis for Group G ----------
Group G - Switzerland vs. Cameroon: Winner Switzerland with 0.69 probability
Group G - Brazil vs. Serbia: Winner Brazil with 0.72 probability
Group G - Cameroon vs. Serbia: Winner Serbia with 0.66 probability
Group G - Brazil vs. Switzerland: Draw
Group G - Serbia vs. Switzerland: Winner Switzerland with 0.57 probability
Group G - Cameroon vs. Brazil: Winner Brazil with 0.81 probability
Group G advanced:
Brazil -------- 7
Switzerland -------- 7
Serbia -------- 3
Cameroon -------- 0
---------- Starting Analysis for Group H ----------
Group H - Uruguay vs. South Korea: Winner Uruguay with 0.62 probability
Group H - Portugal vs. Ghana: Winner Portugal with 0.81 probability
Group H - South Korea vs. Ghana: Winner South Korea with 0.76 probability
Group H - Portugal vs. Uruguay: Winner Portugal with 0.60 probability
Group H - Ghana vs. Uruguay: Winner Uruguay with 0.77 probability
Group H - South Korea vs. Portugal: Winner Portugal with 0.67 probability
Group H advanced:
Portugal -------- 9
Uruguay -------- 6
South Korea -------- 3
Ghana -------- 0
上面的模型有一些结果很有趣,比如巴西和瑞士以及丹麦和法国之间的平局。
在季后赛中,思路是一样的:
advanced = advanced_group
playoffs = {"Round of 16": [], "Quarter-Final": [], "Semi-Final": [], "Final": []}
for p in playoffs.keys():
playoffs[p] = []
actual_round = ""
next_rounds = []
for p in playoffs.keys():
if p == "Round of 16":
control = []
for a in range(0, len(advanced*2), 1):
if a < len(advanced):
if a % 2 == 0:
control.append((advanced*2)[a][0])
else:
control.append((advanced*2)[a][1])
else:
if a % 2 == 0:
control.append((advanced*2)[a][1])
else:
control.append((advanced*2)[a][0])
playoffs[p] = [[control[c], control[c+1]] for c in range(0, len(control)-1, 1) if c%2 == 0]
for i in range(0, len(playoffs[p]), 1):
game = playoffs[p][i]
home = game[0]
away = game[1]
team_1 = find_stats(home)
team_2 = find_stats(away)
features_g1 = find_features(team_1, team_2)
features_g2 = find_features(team_2, team_1)
probs_g1 = gb.predict_proba([features_g1])
probs_g2 = gb.predict_proba([features_g2])
team_1_prob = (probs_g1[0][0] + probs_g2[0][1])/2
team_2_prob = (probs_g2[0][0] + probs_g1[0][1])/2
if actual_round != p:
print("-"*10)
print("Starting simulation of %s"%(p))
print("-"*10)
print("\n")
if team_1_prob < team_2_prob:
print("%s vs. %s: %s advances with prob %.2f"%(home, away, away, team_2_prob))
next_rounds.append(away)
else:
print("%s vs. %s: %s advances with prob %.2f"%(home, away, home, team_1_prob))
next_rounds.append(home)
game.append([team_1_prob, team_2_prob])
playoffs[p][i] = game
actual_round = p
else:
playoffs[p] = [[next_rounds[c], next_rounds[c+1]] for c in range(0, len(next_rounds)-1, 1) if c%2 == 0]
next_rounds = []
for i in range(0, len(playoffs[p])):
game = playoffs[p][i]
home = game[0]
away = game[1]
team_1 = find_stats(home)
team_2 = find_stats(away)
features_g1 = find_features(team_1, team_2)
features_g2 = find_features(team_2, team_1)
probs_g1 = gb.predict_proba([features_g1])
probs_g2 = gb.predict_proba([features_g2])
team_1_prob = (probs_g1[0][0] + probs_g2[0][1])/2
team_2_prob = (probs_g2[0][0] + probs_g1[0][1])/2
if actual_round != p:
print("-"*10)
print("Starting simulation of %s"%(p))
print("-"*10)
print("\n")
if team_1_prob < team_2_prob:
print("%s vs. %s: %s advances with prob %.2f"%(home, away, away, team_2_prob))
next_rounds.append(away)
else:
print("%s vs. %s: %s advances with prob %.2f"%(home, away, home, team_1_prob))
next_rounds.append(home)
game.append([team_1_prob, team_2_prob])
playoffs[p][i] = game
actual_round = p
结果如下:
----------
Starting simulation of Round of 16
----------
Netherlands vs. United States: Netherlands advances with prob 0.54
Argentina vs. Denmark: Argentina advances with prob 0.59
Spain vs. Croatia: Spain advances with prob 0.61
Brazil vs. Uruguay: Brazil advances with prob 0.64
Senegal vs. England: England advances with prob 0.64
Poland vs. France: France advances with prob 0.67
Germany vs. Belgium: Belgium advances with prob 0.53
Switzerland vs. Portugal: Portugal advances with prob 0.57
----------
Starting simulation of Quarter-Final
----------
Netherlands vs. Argentina: Netherlands advances with prob 0.51
Spain vs. Brazil: Brazil advances with prob 0.54
England vs. France: England advances with prob 0.51
Belgium vs. Portugal: Portugal advances with prob 0.52
----------
Starting simulation of Semi-Final
----------
Netherlands vs. Brazil: Brazil advances with prob 0.55
England vs. Portugal: England advances with prob 0.51
----------
Starting simulation of Final
----------
Brazil vs. England: Brazil advances with prob 0.56
我们以图示的方式来展示我们的结果。
import networkx as nx
from networkx.drawing.nx_pydot import graphviz_layout
plt.figure(figsize=(15, 10))
G = nx.balanced_tree(2, 3)
labels = []
for p in playoffs.keys():
for game in playoffs[p]:
label = f"{game[0]}({round(game[2][0], 2)}) \n {game[1]}({round(game[2][1], 2)})"
labels.append(label)
labels_dict = {}
labels_rev = list(reversed(labels))
for l in range(len(list(G.nodes))):
labels_dict[l] = labels_rev[l]
pos = graphviz_layout(G, prog='twopi')
labels_pos = {n: (k[0], k[1]-0.08*k[1]) for n,k in pos.items()}
center = pd.DataFrame(pos).mean(axis=1).mean()
nx.draw(G, pos = pos, with_labels=False, node_color=range(15), edge_color="#bbf5bb", width=10, font_weight='bold',cmap=plt.cm.Greens, node_size=5000)
nx.draw_networkx_labels(G, pos = labels_pos, bbox=dict(boxstyle="round,pad=0.3", fc="white", ec="black", lw=.5, alpha=1),
labels=labels_dict)
texts = ["Round \nof 16", "Quarter \n Final", "Semi \n Final", "Final\n"]
pos_y = pos[0][1] + 55
for text in reversed(texts):
pos_x = center
pos_y -= 75
plt.text(pos_y, pos_x, text, fontsize = 18)
plt.axis('equal')
plt.show()
模拟世界杯的结果如下,我们的模型预测巴西队获胜,决赛中对阵英格兰队的概率为 56%! 模型预测结果中最大的冷门是比利时击败德国和英格兰进入决赛,在四分之一决赛中淘汰法国。看到一些概率非常小的比赛很有趣,比如荷兰对阿根廷。
在本篇内容中,ShowMeAI应用机器学习的方法,对世界杯参赛球队进行分析和建模,模拟与预测世界杯比赛结果。全篇内容包括详细的数据预处理、数据分析、特征工程、机器学习建模与模型调参优化,模型应用及结果可视化。当然,世界杯的有趣之处就在于,比赛场上瞬息万变,任何的结果都可能会发生,让我们一起跟随世界杯,欣赏每一场精彩的比赛吧!
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。