前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >数据科学|Pandas 对数值进行分箱操作的 4 种方法

数据科学|Pandas 对数值进行分箱操作的 4 种方法

作者头像
陆勤_数据人网
发布2022-12-22 16:12:45
1.9K0
发布2022-12-22 16:12:45
举报
文章被收录于专栏:数据科学与人工智能

原文来源:

https://colab.research.google.com/drive/1yWTl2OzOnxG0jCdmeIN8nV1MoX3KQQ_1%3Fusp%3Dsharing

分箱是一种常见的数据预处理技术有时也被称为分桶或离散化,他可用于将连续数据的间隔分组到“箱”或“桶”中。

在本文中,我们将讨论使用 python Pandas 库对数值进行分箱的 4 种方法。

我们创建以下合成数据用于演示

代码语言:javascript
复制
import pandas as pd # version 1.3.5 
import numpy as np 
def create_df(): 
 df = pd.DataFrame({'score': np.random.randint(0,101,1000)}) 
 return df 
 
create_df() 
df.head()

数据包括 1000 名学生的 0 到 100 分的考试分数。而这次的任务是将数字分数分为值“A”、“B”和“C”的等级,其中“A”是最好的等级,“C”是最差的等级。

1、between & loc

Pandas .between 方法返回一个包含 True 的布尔向量,用来对应的 Series 元素位于边界值 left 和 right 之间。

参数有下面三个:

  • left:左边界
  • right:右边界
  • inclusive:要包括哪个边界。可接受的值为 {“both”、“neither”、“left”、“right”}。

根据以下间隔规则将学生的分数分为等级:

  • A: (80, 100]
  • B: (50, 80]
  • C: [0, 50]

其中方括号 [ 和圆括号 ) 分别表示边界值是包含的和不包含的。我们需要确定哪个分数在感兴趣的区间之间,并为其分配相应的等级值。注意看下面的不同的参数表示是否包含边界

代码语言:javascript
复制
df.loc[df['score'].between(0, 50, 'both'), 'grade'] = 'C' 
df.loc[df['score'].between(50, 80, 'right'), 'grade'] = 'B' 
df.loc[df['score'].between(80, 100, 'right'), 'grade'] = 'A'

以下是每个分数区间的人数:

代码语言:javascript
复制
df.grade.value_counts()
代码语言:javascript
复制
C    488
B    310
A    202
Name: grade, dtype: int64

此方法需要为每个 bin 编写处理的代码,因此它仅适用于 bin 很少的情况。

2、cut

可以使用 cut将值分类为离散的间隔。此函数对于从连续变量到分类变量也很有用。

cut的参数如下:

  • x:要分箱的数组。必须是一维的。
  • bins:标量序列:定义允许非均匀宽度的 bin 边缘。
  • labels:指定返回的 bin 的标签。必须与上面的 bins 参数长度相同。
  • include_lowest: (bool) 第一个区间是否应该是左包含的。
代码语言:javascript
复制
bins = [0, 50, 80, 100] 
labels = ['C', 'B', 'A'] 
df['grade'] = pd.cut(x = df['score'], 
                      bins = bins, 
                      labels = labels, 
                      include_lowest = True)

这样就创建一个包含 bin 边界值的 bins 列表和一个包含相应 bin 标签的标签列表。

查看每个区段的人数

代码语言:javascript
复制
df.grade.value_counts()
代码语言:javascript
复制
C    488
B    310
A    202
Name: grade, dtype: int64

结果与上面示例相同。

3、qcut

qcut可以根据排名或基于样本分位数将变量离散为大小相等的桶[3]。

在前面的示例中,我们为每个级别定义了分数间隔,这回使每个级别的学生数量不均匀。在下面的示例中,我们将尝试将学生分类为 3 个具有相等(大约)数量的分数等级。示例中有 1000 名学生,因此每个分箱应该有大约 333 名学生。

qcut参数:

  • x:要分箱的输入数组。必须是一维的。
  • q:分位数。10 表示十分位数,4 表示四分位数等。也可以是交替排列的分位数,例如[0, .25, .5, .75, 1.] 四分位数。
  • labels:指定 bin 的标签。必须与生成的 bin 长度相同。
  • retbins: (bool) 是否返回 (bins, labels)。
代码语言:javascript
复制
df['grade'], cut_bin = pd.qcut(df['score'], 
                          q = 3, 
                          labels = ['C', 'B', 'A'], 
                          retbins = True) 
df.head()

如果 retbins 设置为 True 则会返回 bin 边界。

代码语言:javascript
复制
print (cut_bin) 
>> [  0.  36.  68. 100.]

分数间隔如下:

  • C:[0, 36]
  • B:(36, 68]
  • A:(68, 100]

使用 .value_counts() 检查每个等级有多少学生。理想情况下,每个箱应该有大约 333 名学生。

代码语言:javascript
复制
df.grade.value_counts()
代码语言:javascript
复制
C    340
A    331
B    329
Name: grade, dtype: int64

4、value_counts

虽然 pandas .value_counts 通常用于计算系列中唯一值的数量,但它也可用于使用 bins 参数将值分组到半开箱中。

代码语言:javascript
复制
df['score'].value_counts(bins = 3, sort = False)

默认情况下, .value_counts 按值的降序对返回的系列进行排序。将 sort 设置为 False 以按其索引的升序对系列进行排序。

代码语言:javascript
复制
(-0.101, 33.333]    310
(33.333, 66.667]    340
(66.667, 100.0]     350
Name: score, dtype: int64

series 索引是指每个 bin 的区间范围,其中方括号 [ 和圆括号 ) 分别表示边界值是包含的和不包含的。返回series 的值表示每个 bin 中有多少条记录。

与 .qcut 不同,每个 bin 中的记录数不一定相同(大约)。.value_counts 不会将相同数量的记录分配到相同的类别中,而是根据最高和最低分数将分数范围分成 3 个相等的部分。分数的最小值为 0,最大值为 100,因此这 3 个部分中的每一个都大约在 33.33 范围内。这也解释了为什么 bin 的边界是 33.33 的倍数。

我们还可以通过传入边界列表来定义 bin 边界。

代码语言:javascript
复制
df['score'].value_counts(bins = [0,50,80,100], sort = False)
代码语言:javascript
复制
(-0.001, 50.0]    488
(50.0, 80.0]      310
(80.0, 100.0]     202
Name: score, dtype: int64

这给了我们与示例 1 和 2 相同的结果。

总结

在本文中,介绍了如何使用 .between、.cut、.qcut 和 .value_counts 对连续值进行分箱。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-09-20,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 数据科学与人工智能 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1、between & loc
  • 2、cut
  • 3、qcut
  • 4、value_counts
  • 总结
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档