前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >[Nature Machine Intelligence | 论文简读]三种类型的增量学习

[Nature Machine Intelligence | 论文简读]三种类型的增量学习

作者头像
智能生信
发布2022-12-29 17:38:38
6460
发布2022-12-29 17:38:38
举报
文章被收录于专栏:智能生信

简读分享 | 乔剑博 编辑 | 王宇哲

论文题目

Three types of incremental learning

论文摘要

从非平稳的数据流中渐进地学习新信息,被称为“持续学习”,是自然智能的一个关键特征,但对深度神经网络来说是一个具有挑战性的问题。近年来,许多用于持续学习的深度学习方法被提出,但由于缺乏一个通用的框架,它们的性能比较困难。为了帮助解决这个问题,作者描述了持续学习的三种基本类型或“场景”:任务增量学习、域增量学习和类增量学习。每一种情况都有自己的挑战。为了说明这一点,作者根据每个场景使用split MNIST和split CIFAR-100数据集,对目前使用的持续学习策略进行了全面的实证比较。作者展示了三种场景在难度和不同策略的有效性方面的显著差异。提出的分类旨在通过形成清晰定义基准问题的关键基础,来构建持续学习领域。

论文链接

https://www.nature.com/articles/s42256-022-00568-3

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-12-20,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 智能生信 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档