本文来自社区投稿,作者:ABCDEFG,ACCV 2022 国际细粒度图像分析挑战赛——网络监督的细粒度识别赛道冠军队伍。
在刚刚结束的 ACCV 2022 国际细粒度图像分析挑战赛中,我们团队在 133 支参赛队伍中脱颖而出,在 Leadboard-B 上以 2.5 的绝对优势取得冠军。
比赛成绩截图
在比赛过程中,我们使用了一些对细粒度分类十分有效的解决方案。
所有的模型权重和全部代码都已经开源,欢迎大家使用。
本次赛事相关的所有预训练,微调以及推理的代码和配置文件分别放在 MMSelfSup 以及 MMClassification 的 projects 中, 欢迎大家 star 和使用。
自监督预训练部分:
https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/projects/fgia_accv2022_1st
微调与模型推理:
https://github.com/open-mmlab/mmclassification/tree/dev-1.x/projects/fgia_accv2022_1st
今天这篇文章我们将整体介绍此次夺冠的方案,希望为大家提供一些经验以供参考。
本周四晚,受 OpenMMLab 社区开放麦栏目的邀请,我们也将会针对本次的冠军方案开展直播,介绍更多的比赛细节,分享比赛期间的经验教训,欢迎大家预约观看!
比赛介绍
ACCV 2022 细粒度图像分析挑战赛是由南京理工大学和澳大利亚 University of Wollongong 主办、极市平台提供技术支持的国际性赛事。
本赛事涉及的细粒度图像分析是计算机视觉和模式识别中的热门研究课题,其目标是对细粒度级别图像中的物体子类(如不同种类的“狗”:“哈士奇”、“阿拉斯加”、“萨摩耶”)进行定位、识别及检索等视觉分析任务的研究,具有真实场景下广泛的应用价值。然而因细粒度级别子类别间较小的类间差异和较大的类内差异,使其区别于传统图像分析问题成为更具挑战的任务。
此次我们参加的赛题是:网络监督的细粒度识别,接下来我们将从数据清洗、模型选择、训练技巧(Bag-of-tricks)、模型集成和后处理等角度介绍我们的方案。
数据清洗
官方提供的数据包含: Train、Test-A 和 Test-B。Train 是用于训练的数据,这部分数据官方提供了 label。同时因为这项比赛分为 A/B 榜,所以 Test A 和 Test B 分别是用于评测的数据,这两部分数据是可以获得的,但是他们的 label 是不提供的。
这几部分的数据的详细信息如下:
对于用于训练的数据 Train, 其分布如下:
可以发现该数据为长尾分布,其中最多类的数据有 422 张图,最少类数据却只有 3 张图, 均值为 166 张。
除了以上的分布问题,训练数据还存在以下几个问题:
针对以上问题,我们尝试了以下几种方案:
成功的方案:
无明显效果的方案:
模型选择和方法
考虑到模型性能和速度,我们所有实验均采用 ViT-L 和 Swin-V2。方法总览如下图所示:
总结起来就以下几步:
其中第 2 步和第 3 步通过自蒸馏的形式进行迭代,自蒸馏是指本次训练得到的集成模型充当 teacher 对下一轮模型的训练进行指导。
训练技巧
在分类微调(fine-tuning)的过程中我们使用了以下几种策略:
模型集成
我们最终使用了 17 个模型进行集成,其中包含 10 个 ViT-L 模型和 7 个 Swin-v2 模型,集成的权重根据模型在 Test A 上的精度,按比例得到。总体来说就是,高精度模型权重更大,低精度模型权重更小。
后处理
因为比赛中有说明,Train 集中的类别不平衡,但 Test 集中类别是按均匀分布的,所有对最后的预测结果,我们微调了标签的分布,调整前后的标签分布如下图所示:
总结
最终,我们模型的消融效果如下图所示:
代码仓库
考虑到效率和实验管理,我们选择了 MMSelfSup 和 MMClassification,这两个库均来自于 OpenMMLab 开源框架。
此次赛事相关的所有预训练,微调以及推理的代码和配置文件分别放在 MMSelfSup 和 MMClassification 的 projects 中, 欢迎大家 star 和使用。
自监督预训练部分:
https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/projects/fgia_accv2022_1st
微调与模型推理:
https://github.com/open-mmlab/mmclassification/tree/dev-1.x/projects/fgia_accv2022_1st
相较于市面上的其他库,这两个库具有以下优点:
实验日志信息截图
引用:
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2025 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号:粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287
Copyright © 2013 - 2025 Tencent Cloud.
All Rights Reserved. 腾讯云 版权所有