前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >用javascript分类刷leetcode-排序算法(图文视频讲解)

用javascript分类刷leetcode-排序算法(图文视频讲解)

原创
作者头像
hellocoder2028
发布2023-01-02 12:26:34
4370
发布2023-01-02 12:26:34
举报
文章被收录于专栏:高级前端面试题总结
常见排序算法复杂度
d s
d s
n^2除nlogn在不同数据规模下的结果
ds_114
ds_114
常见排序算法

算法可视化来源:http://visualgo.net/

冒泡排序:时间复杂度O(n^2)

  • 比较相邻元素,如果第一个比第二个大,则交换他们
  • 一轮下来,可以保证最后一个数是最大的
  • 执行n-1轮,就可以完成排序
ds_192
ds_192
代码语言:javascript
复制
function bubbleSort(arr) {
    var len = arr.length;
    for (var i = 0; i < len; i++) {
        for (var j = 0; j < len - 1 - i; j++) {
            if (arr[j] > arr[j+1]) {        //相邻元素两两对比
                var temp = arr[j+1];        //元素交换
                arr[j+1] = arr[j];
                arr[j] = temp;
            }
        }
    }
    return arr;
}

选择排序:时间复杂度O(n^2)

  • 找到数组中的最小值,将它放在第一位
  • 接着找到第二小的值,将它放在第二位
  • 依次类推,执行n-1轮
ds_193
ds_193
代码语言:javascript
复制
function selectionSort(arr) {
    var len = arr.length;
    var minIndex, temp;
    for (var i = 0; i < len - 1; i++) {
        minIndex = i;
        for (var j = i + 1; j < len; j++) {
            if (arr[j] < arr[minIndex]) {     //寻找最小的数
                minIndex = j;                 //将最小数的索引保存
            }
        }
        temp = arr[i];
        arr[i] = arr[minIndex];
        arr[minIndex] = temp;
    }
    return arr;
}

插入排序:时间复杂度O(n^2)

  • 从第二个数开始往前比
  • 比它大就往后排
  • 以此类推直到最后一个数
ds_194
ds_194
代码语言:javascript
复制
function insertionSort(arr) {
    var len = arr.length;
    var preIndex, current;
    for (var i = 1; i < len; i++) {
        preIndex = i - 1;
        current = arr[i];
        while(preIndex >= 0 && arr[preIndex] > current) {
            arr[preIndex+1] = arr[preIndex];
            preIndex--;
        }
        arr[preIndex+1] = current;
    }
    return arr;
}

归并排序:时间复杂度O(nlogn),分的时间复杂度O(logn),合并的过程的复杂度是O(n)

  • 分:把数组分成两半,递归子数组,进行分割操作,直到分成一个数
  • 合:把两个字数组合并成一个有序数组,直到全部子数组合并完毕,合并前先准备一个空数组,存放合并之后的结果,然后不断取出两个子数组的第一个元素,比较他们的大小,小的先进入之前准备的空数组中,然后继续遍历其他元素,直到子数组中的元素都完成遍历
ds_195
ds_195
代码语言:javascript
复制
function mergeSort(arr) {  //采用自上而下的递归方法
    var len = arr.length;
    if(len < 2) {
        return arr;
    }
    var middle = Math.floor(len / 2),
        left = arr.slice(0, middle),
        right = arr.slice(middle);
    return merge(mergeSort(left), mergeSort(right));
}

function merge(left, right)
{
    var result = [];

    while (left.length && right.length) {
        if (left[0] <= right[0]) {
            result.push(left.shift());
        } else {
            result.push(right.shift());
        }
    }

    while (left.length)
        result.push(left.shift());

    while (right.length)
        result.push(right.shift());

    return result;
}

快速排序:时间复杂度O(nlogn),递归复杂度是O(logn),分区复杂度O(n)

  • 分区:从数组中选一个基准值,比基准值小的放在它的前面,比基准值大的放在它的后面
  • 递归:递归对基准值前后的子数组进行第一步的操作
ds_196
ds_196
代码语言:javascript
复制
function quickSort(arr, left, right) {
    var len = arr.length,
        partitionIndex,
        left = typeof left != 'number' ? 0 : left,
        right = typeof right != 'number' ? len - 1 : right;

    if (left < right) {
        partitionIndex = partition(arr, left, right);
        quickSort(arr, left, partitionIndex-1);
        quickSort(arr, partitionIndex+1, right);
    }
    return arr;
}

function partition(arr, left ,right) {     //分区操作
      //设定基准值位置(pivot)当然也可以选择最右边的元素为基准 也可以随机选择然后和最左或最右元素交换
    var pivot = left,                      
        index = pivot + 1;
    for (var i = index; i <= right; i++) {
        if (arr[i] < arr[pivot]) {
            swap(arr, i, index);
            index++;
        }        
    }
    swap(arr, pivot, index - 1);
    return index-1;
}

function swap(arr, i, j) {
    var temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
}
148. 排序链表(medium)

给你链表的头结点 head ,请将其按 升序 排列并返回 排序后的链表 。示例 1:

3:输入:head = [] 输出:[]提示:链表中节点的数目在范围 0, 5 * 104 内 -105 <= Node.val <= 105

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Jq3L3KV9-1672633213425)(null)

动画过大,点击查看

方法1:自顶向下
  • 思路:用归并排序的思路,先不断分割,知道每个子区间只有一个节点位置,然后开始合并。
  • 复杂度:时间复杂度O(nlogn),和归并排序的复杂度一样。空间复杂度O(logn),递归的栈空间

js:

代码语言:javascript
复制
const merge = (head1, head2) => {
    const dummyHead = new ListNode(0);
    let temp = dummyHead, temp1 = head1, temp2 = head2;
    while (temp1 !== null && temp2 !== null) {//合并子区间 小的节点先连
        if (temp1.val <= temp2.val) {
            temp.next = temp1;
            temp1 = temp1.next;
        } else {
            temp.next = temp2;
            temp2 = temp2.next;
        }
        temp = temp.next;
    }
    if (temp1 !== null) {//两条链表还有节点没合并完,直接合并过来
        temp.next = temp1;
    } else if (temp2 !== null) {
        temp.next = temp2;
    }
    return dummyHead.next;
}

const toSortList = (head, tail) => {
    if (head === null) {//极端情况
        return head;
    }
    if (head.next === tail) {//分割到只剩一个节点
        head.next = null;
        return head;
    }
    let slow = head, fast = head;
    while (fast !== tail) {//的到中间节点
        slow = slow.next;
        fast = fast.next;
        if (fast !== tail) {
            fast = fast.next;
        }
    }
    const mid = slow;
    return merge(toSortList(head, mid), toSortList(mid, tail));//分割区间 递归合并
}

var sortList = function(head) {
    return toSortList(head, null);
};
方法2:自底向上
  • 思路:直接进行循环合并操作。
  • 复杂度:时间复杂度O(nlogn),空间复杂度O(1)

js:

代码语言:javascript
复制
const merge = (head1, head2) => {
    const dummyHead = new ListNode(0);
    let temp = dummyHead, temp1 = head1, temp2 = head2;
    while (temp1 !== null && temp2 !== null) {
        if (temp1.val <= temp2.val) {
            temp.next = temp1;
            temp1 = temp1.next;
        } else {
            temp.next = temp2;
            temp2 = temp2.next;
        }
        temp = temp.next;
    }
    if (temp1 !== null) {
        temp.next = temp1;
    } else if (temp2 !== null) {
        temp.next = temp2;
    }
    return dummyHead.next;
}

var sortList = function(head) {
    if (head === null) {
        return head;
    }
    let length = 0;
    let node = head;
    while (node !== null) {
        length++;
        node = node.next;
    }
    const dummyHead = new ListNode(0, head);
    for (let subLength = 1; subLength < length; subLength <<= 1) {
        let prev = dummyHead, curr = dummyHead.next;
        while (curr !== null) {
            let head1 = curr;
            for (let i = 1; i < subLength && curr.next !== null; i++) {
                curr = curr.next;
            }
            let head2 = curr.next;
            curr.next = null;
            curr = head2;
            for (let i = 1; i < subLength && curr != null && curr.next !== null; i++) {
                curr = curr.next;
            }
            let next = null;
            if (curr !== null) {
                next = curr.next;
                curr.next = null;
            }
            const merged = merge(head1, head2);
            prev.next = merged;
            while (prev.next !== null) {
                prev = prev.next;
            }
            curr = next;
        }
    }
    return dummyHead.next;
};
215. 数组中的第K个最大元素 (medium)

给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。你必须设计并实现时间复杂度为 O(n) 的算法解决此问题。示例 1:输入: 3,2,1,5,6,4, k = 2 输出: 5 示例 2:输入: 3,2,3,1,2,4,5,5,6, k = 4 输出: 4提示:1 <= k <= nums.length <= 105 -104 <= numsi <= 104

方法1.维护大小为k的小顶堆,当堆的元素个数小于等于k时,遍历数组,让数组的元素不断加入堆,当堆的大小大于k时,让堆顶元素出列,遍历完数组之后,小顶堆堆顶的元素就是第k大元素。

复杂度:时间复杂度O(nlogk),循环n次,每次堆的操作是O(logk)。空间复杂度O(k)

ds_209
ds_209

js:

代码语言:javascript
复制
class Heap {
    constructor(comparator = (a, b) => a - b, data = []) {
        this.data = data;
        this.comparator = comparator;//比较器
        this.heapify();//堆化
    }

    heapify() {
        if (this.size() < 2) return;
        for (let i = Math.floor(this.size() / 2) - 1; i >= 0; i--) {
            this.bubbleDown(i);//bubbleDown操作
        }
    }

    peek() {
        if (this.size() === 0) return null;
        return this.data[0];//查看堆顶
    }

    offer(value) {
        this.data.push(value);//加入数组
        this.bubbleUp(this.size() - 1);//调整加入的元素在小顶堆中的位置
    }

    poll() {
        if (this.size() === 0) {
            return null;
        }
        const result = this.data[0];
        const last = this.data.pop();
        if (this.size() !== 0) {
            this.data[0] = last;//交换第一个元素和最后一个元素
            this.bubbleDown(0);//bubbleDown操作
        }
        return result;
    }

    bubbleUp(index) {
        while (index > 0) {
            const parentIndex = (index - 1) >> 1;//父节点的位置
            //如果当前元素比父节点的元素小,就交换当前节点和父节点的位置
            if (this.comparator(this.data[index], this.data[parentIndex]) < 0) {
                this.swap(index, parentIndex);//交换自己和父节点的位置
                index = parentIndex;//不断向上取父节点进行比较
            } else {
                break;//如果当前元素比父节点的元素大,不需要处理
            }
        }
    }

    bubbleDown(index) {
        const lastIndex = this.size() - 1;//最后一个节点的位置
        while (true) {
            const leftIndex = index * 2 + 1;//左节点的位置
            const rightIndex = index * 2 + 2;//右节点的位置
            let findIndex = index;//bubbleDown节点的位置
            //找出左右节点中value小的节点
            if (
                leftIndex <= lastIndex &&
                this.comparator(this.data[leftIndex], this.data[findIndex]) < 0
            ) {
                findIndex = leftIndex;
            }
            if (
                rightIndex <= lastIndex &&
                this.comparator(this.data[rightIndex], this.data[findIndex]) < 0
            ) {
                findIndex = rightIndex;
            }
            if (index !== findIndex) {
                this.swap(index, findIndex);//交换当前元素和左右节点中value小的
                index = findIndex;
            } else {
                break;
            }
        }
    }

    swap(index1, index2) {//交换堆中两个元素的位置
        [this.data[index1], this.data[index2]] = [this.data[index2], this.data[index1]];
    }

    size() {
        return this.data.length;
    }
}



var findKthLargest = function (nums, k) {
    const h = new Heap((a, b) => a - b);

    for (const num of nums) {
        h.offer(num);//加入堆
        if (h.size() > k) {//堆的size超过k时,出堆
            h.poll();
        }
    }

    return h.peek();
};

方法2:堆排序

ds_156
ds_156
  • 思路:利用原地堆排序的思想,将前k-1大的元素加入队尾,最后队顶的元素就是第k大的元素
  • 复杂度:时间复杂度O(nlogn),堆的创建复杂度是O(n),移动前k-1大的元素然后堆化复杂度是O(klogn),k<=n,最差的情况下是O(nlogn),空间复杂度O(logn),递归的栈空间

js:

代码语言:javascript
复制
var findKthLargest = function (nums, k) {
    let heapSize = nums.length;
    buildMaxHeap(nums, heapSize); //构建大顶堆 大小为heapSize
    //大顶堆 前k-1个堆顶元素不断和数组的末尾元素交换 然后重新heapify堆顶元素
    //这个操作就是之前小顶堆出堆顶的操作,只不过现在是原地排序
    for (let i = nums.length - 1; i >= nums.length - k + 1; i--) {
        swap(nums, 0, i);//交换堆顶和数组末尾元素
        --heapSize; //堆大小减1
        maxHeapify(nums, 0, heapSize);//重新heapify
    }
    return nums[0];//返回堆顶元素,就是第k大的元素

    function buildMaxHeap(nums, heapSize) {
        for (let i = Math.floor(heapSize / 2) - 1; i >= 0; i--) {//从第一个非叶子节点开始构建
            maxHeapify(nums, i, heapSize);
        }
    }
    // 从左向右,自上而下的调整节点
    function maxHeapify(nums, i, heapSize) {
        let l = i * 2 + 1;//左节点
        let r = i * 2 + 2;//右节点
        let largest = i;
        if (l < heapSize && nums[l] > nums[largest]) {
            largest = l;
        }
        if (r < heapSize && nums[r] > nums[largest]) {
            largest = r;
        }
        if (largest !== i) {
            swap(nums, i, largest); //找到左右节点中大的元素交换
            //递归交换后面的节点
            maxHeapify(nums, largest, heapSize);
        }
    }

    function swap(a, i, j) {//交换函数
        let temp = a[i];
        a[i] = a[j];
        a[j] = temp;
    }
};

方法3:快速排序的分区方法

ds_157
ds_157
  • 思路:借鉴快排的思路,不断随机选择基准元素,看进行partition之后,该元素是不是在n-k的位置。
  • 复杂度:
  1. 时间复杂度O(nlogn)
  2. 空间复杂度O(logn),递归的深度

js:

代码语言:javascript
复制
const findKthLargest = (nums, k) => {
    const n = nums.length;

    const quick = (l, r) => {
        if (l > r) return;//递归终止条件
        let random = Math.floor(Math.random() * (r - l + 1)) + l; //随机选取一个索引
        swap(nums, random, r); //将它和位置r的元素交换,让nums[r]作为基准元素

        //对基准元素进行partition
        let pivotIndex = partition(nums, l, r);
        //进行partition之后,基准元素左边的元素都小于它 右边的元素都大于它
        //如果partition之后,这个基准元素的位置pivotIndex正好是n-k 则找大了第k大的数
        //如果n-k<pivotIndex,则在pivotIndex的左边递归查找
        //如果n-k>pivotIndex,则在pivotIndex的右边递归查找
        if (n - k < pivotIndex) {
            quick(l, pivotIndex - 1);
        } else {
            quick(pivotIndex + 1, r);
        }
    };

    quick(0, n - 1);//函数开始传入的left=0,right= n - 1
    return nums[n - k]; //最后找到了正确的位置 也就是n-k等于pivotIndex 这个位置的元素就是第k大的数
};

function partition(nums, left, right) {
    let pivot = nums[right];                 //最右边的元素为基准
    let pivotIndex = left;                   //pivotIndex初始化为left
    for (let i = left; i < right; i++) {     //遍历left到right-1的元素
        if (nums[i] < pivot) {                 //如果当前元素比基准元素小
            swap(nums, i, pivotIndex);           //把它交换到pivotIndex的位置
            pivotIndex++;                        //pivotIndex往前移动一步
        }
    }
    swap(nums, right, pivotIndex);           //最后交换pivotIndex和right
    return pivotIndex;                       //返回pivotIndex
}

function swap(nums, p, q) {//交换数组中的两个元素
    const temp = nums[p];
    nums[p] = nums[q];
    nums[q] = temp;
}

视频讲解:传送门

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 常见排序算法复杂度
  • n^2除nlogn在不同数据规模下的结果
  • 常见排序算法
  • 148. 排序链表(medium)
    • 方法1:自顶向下
    • 方法2:自底向上
    • 215. 数组中的第K个最大元素 (medium)
    领券
    问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档