用户分析是电商数据分析中重要的模块,在对用户特征深度理解和用户需求充分挖掘基础上,进行全生命周期的运营管理(拉新—>活跃—>留存—>价值提升—>忠诚),请尝试回答以下3个问题:
① 用户第一单购买的行为往往反映了用户对平台的信任度和消费能力。现在数据库中有一张用户交易表order,其中有userid(用户ID)、amount(消费金额)、paytime(支付时间),请写出对应的SQL语句,查出每个用户第一单的消费金额。
查出每个用户第一单的消费金额
--使用窗口函数(考虑一个用户不能同时下两单)
select a.userid,a.amount
from
(select * ,rank() over(partition by userid order by paytime) as paytime_rank from order ) as
a where paytime_rank=1
--使用联结方法
--查出第一单消费时间
creat view t as
(select userid, min(paytime) as 首次消费时间 from order group by userid)
--找出第一消费金额
select t.userid,t.首次消费时间 ,b.amount from t inner join
order as b
on (t.userid=b.userid and t.首次消费时间=b.paytime)
② 当你发现本月的支付用户数环比上月大幅下跌(超30%),你会如何去探查背后的原因?请描述你的思路和其中涉及的关键指标
在笔试中这一步就比较明确了,面试时还需要像面试官明确这些具体的详细信息:
现在的问题是为什么支付用户数下降?是用户数下降了还是转化率下降了?
使用多维度拆解分析方法对支付用户数这个指标进行拆解:支付用户数=用户数*转化率
从新老用户维度进行拆解,把用户数拆解成新用户数和老用户活跃人数,其中新用户数在平台购买过的用户人数,老用户活跃人数是在平台购买过的用户在平台活跃的人数
新用户数按渠道维度,又继续拆解为渠道A新用户,渠道B新用户等,考虑不同渠道的转化率也可能不一样,同样分渠道拆解为渠道A转化率,渠道B转化率,渠道C转化率
收集证据,分析渠道投放效果。使用对比分析方法,如果确认某渠道用户相比上月确实降低
则对渠道用户数进行多维度拆解,可以从年龄构成拆分,性别构成拆分,职业结构拆分和地域组成拆分,分别进行假设检验,手机证据,将渠道人数降低定位到是那个人群用户数降低,渠道的导入量降低的原因,分析渠道投放是否有效。
使用对比分析如果确认某渠道转化率降低,继续按业务流程对该渠道具体哪一步出现的问题进行拆解,假设平台用户的流程有广告、进店、选择商品、购买
则按业务流程拆解如下,通过假设检验,收集数据,查看产品板块是否更新,询问客服是否有投诉,有页面崩溃,不能成功下单导致某一环节流失率高,闪退,使用漏斗模型,判断是哪个产品环节出了问题。使用假设检验,验证每个环节的假设。
通过假设检验和对比分析方法分析老用户活跃人数是否降低,如果降低的话,思考老用户活跃人数为什么会降低呢?我们从用户、产品、竞品三个维度分析原因
可以分别从几个假设去分析原因,如果以上三大部分假设有问题,总结原因如下:
总结新用户引入不够,老用户留存没做好,产品本身改动, 导致出现了这种大幅下跌的情况
针对以上的分析提出以下建议:
③ 为了更好的理解用户,我们通常会基于用户的特征对用户进行分类,便于更加精细化的理解用户,设计产品和运营玩法,请你设计对应的聚类方法,包括重点的用户特征的选择及聚类算法并说明其基本原理和步骤
使用K-means聚类的好处是可以加入性别,地域,薪资等特征,这样就可以得到的分类的年龄分布情况,薪资情况,职业分布等情况,比RFM会信息更多,但类别的解释性没有RFM用户分层强
特征选择:人口统计学特征(性别,地域 ,年龄,薪资,职业,家庭成员),用户分层特征(消费频率,平均消费金额,最近一次消费时间)产品特征(购买物品类别)
基本原理:
step1:选举K个对象作为初始的聚类中心; step2:计算每个对象与各种子聚类中心间的欧式距离,把每个对象分配给他最近的聚类中心; step3:一旦全部对象被分配了,每个聚类的聚类中心会根据聚类中现有的对象被重新计算,重新分配。依次循环,直到聚类中心点不再改变时循环结束。
根据业务需求,使用RFM对用户进行分层,使用RFM的好处是得到的类别结果具有更明确的实际业务意义,能指导精细化运营。缺点是没有考虑用户的人口统计学特征。
主要得到分层结果重要(一般)价值、发展、挽留、保持客户八类
step1:计算RFM值(消费频率,平均消费金额,最近一次消费时间) step2:分别RFM进行打分,确定打分体系,按价值打分,,计算均值或中值,超过均值/中值则该项指标分类为高,低于均值则该指标分类为低, step3:进行用户分类,根据用户分类规则找到是否高低 step4:对应表格找到用户属于哪个分类
网易严选是网易旗下原创生活类自营电商品牌,深度贯彻“好的生活,没那么贵”的品牌理念。商品覆盖居家、餐厨、配件、服装、洗护、母婴、原生态饮食等几大类目,兼具品质和性价比,得到用户的广泛好评。若你是网易严选负责商品的数据分析师,当面对以下业务问题时,你会如何解决?
① 用户增长团队期望选择一批合适的商品用于吸引新客,期望你帮助从数据的角度筛选出一批合适的商品,你会如何帮助他们进行筛选?请描述你的思路。
答: 该问题的目的是吸引新客,而新客的难点是没有过去的历史消费记录和浏览记录,那如何进行推荐来吸引呢?这本质上一个推荐系统的用户冷启动问题,有如下几个步骤:
② 商品研发负责人期望能有一套指标帮助衡量开发的商品表现,请你帮助设计对应的评估方案,包括设计思路、涉及的数据指标等。
答: 该问题是帮助衡量开发的商品表现,参考了《游戏数据分析实战》这本书的一些内容,提炼如下思维导图
需求角度:需求的强度也就是否用户刚需(用户生命周期和留存)、宽度(人群受众分析,用户年龄段,使用时间段、性别、职业等目标群体大不大、需求的宽度是否会演变等、是否会)和频度(该类需求频率高不高,平台类要判断是否有高频和低频都有,可以采用高频带动低频的方法)。有些行业是采用问卷和预订的方式进行需求分析
宏观环境:使用PEST进行行业分析和竞争市场分析
产品粘性指标:获客总数、留存率和用户对产品的粘性,生命周期维度(新用户增量、活跃用户数量、留存用户数量、支付用户数量)观察少量用户具体行为,根据用户留存情况不断加大产品黏性,不断反馈。针对不同的APP,有不同的北极星指标, 比如电商类产品是GMV,抖音类短视频是用户使用时长等指标。
用户分析:用户人群属性(人口统计学维度)这些用户对产品界面、新手引导、软件功能、社交功能等内容的体验和评价如何,有什么建议。便于对产品进行修订和优化。
渠道质量分析:通过接入渠道的导入量、留存率和付费数据,进行综合排名,全面了解渠道表现。帮助筛选渠道,获取更多的有效用户,让产品收益最大化。
漏斗模型:这部分关注核心环节转化率,使用AARRR漏斗模型,做好每个环节的细节,从渠道曝光量,激活,注册,留存,购买或者价值的部分,实现自增长
产品留存优化:继续优化产品的留存
竞品调研:全方位了解产品动态,评价竞品压力。其主要的价值是上线时机的选择,避重就轻,和竞品打差异化。
APP使用人数预估:在产品上线、版本重大更新前,提前预测最高在线人数,避免出现产品崩溃、充值排队等现象。
广告投放效果分析:每天监控广告投放数据,一旦发现数据异常,及时预警,优化、调整广告投放形式或素材,甚至及时停止广告, 以此提高整体投放效果,降低投放风险。
用户手机机型分布:了解用户手机设备平台构成比例;获得用户当季的主流机型的硬件配置,作为研发项目兼容性测试的必过机型,替代原先的兼容性方法,从而提高产品质量。
绚丽的小海螺 | 作者
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2025 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号:粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287
Copyright © 2013 - 2025 Tencent Cloud.
All Rights Reserved. 腾讯云 版权所有