前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >特斯拉D1芯片遭实名diss:内存到封装都成问题,网友:反正不能公开测评

特斯拉D1芯片遭实名diss:内存到封装都成问题,网友:反正不能公开测评

作者头像
量子位
发布于 2023-03-01 06:47:38
发布于 2023-03-01 06:47:38
3080
举报
文章被收录于专栏:量子位量子位
明敏 发自 凹非寺 量子位 报道 | 公众号 QbitAI

在今年特斯拉AI开放日上,D1芯片风光无限。

独特的晶圆封装系统+芯片设计,让D1在训练万亿参数级神经网络时,可以拥有数量级优势

特斯拉更在发布会上表示,它在性能上已经完全碾压英伟达GPU和谷歌TPU。

不过,颠覆性的设计能够带来关注,也会遭到质疑。

最近,半导体分析网站SemiAnalysis就表示:

D1芯片存在一些重大技术问题

内存、成本上都有疑问

作为特斯拉首款AI训练芯片,D1芯片采用分布式结构和7nm工艺,搭载500亿个晶体管、354个训练节点,实现了超高算力和超高带宽。

根据特斯拉已经透露的信息,SemiAnalysis从以下几个方面提出了质疑:

首先是内存问题

SemiAnalysis认为,D1芯片无论在功能单元层面还是系统层面,想要达到他们所说的算力,内存可能都不够

功能单元层面,D1芯片的单个功能单元具有1.25MB SRAM缓存、1TFlop的FP16/CFP8精度计算能力。

在芯片层面,裸片上没有其他SRAM结构,只有354个单元的1.25MB SRAM来支撑。

基于设计相似的IPU,SemiAnalysis推测这种设计会导致严重的内存缺陷,从而影响芯片的算力。

事实上,每个IPU芯片上SRAM的数量还是D1的两倍,但它在性能上和英伟达A100比起来,劣势依旧非常明显。

在BERT和ResNet50训练中,英伟达A100的速度分别是IPU的1.54倍和1.43倍。

其次,就是在成本问题上。

特斯拉D1芯片之间可以实现无缝融合,这使它能够达到8 TB/s的IO,比ASIC和英伟达高出一个数量级。

为了满足这样大的IO,特斯拉采用了独特的封装方式,即InFO_SoW

这种封装方式的特点就是可以够

在发布会上,它们也展示了由25个D1芯片组成的训练模块。

‍但这种封装方式在实际生产中的难度很高,出现报废的情况会更多,由此也会导致成本突增。

除了这两方面,SemiAnalysis认为D1还有很多未解决的问题。

比如,在发布会现场被问到软件方面的问题时,特斯拉工程师甚至回答他们完全没有准备。

SRAM方面的问题也亟需解决,否则将会面临运行速度过快的风险。

以上种种,都导致特斯拉的开发人员需要对系统进行大量的优化。

此外特斯拉透露,目前他们已经部署的D1芯片只有3000个。

如此看来,D1芯片的摊销成本也是非常高了。

D1真的在神坛之上吗?

事实上,在特斯拉AI开放日的第二天,它的股价上涨甚至还不如英伟达。

可见投资界对于马斯克带来的新技术,也都非常冷静。

有人表示,特斯拉把技术封锁在自己的堡垒内,外界无法测评,也就无从得知它真正的优势和局限性。

这一次向特斯拉开怼的是SemiAnalysis,它是一家半导体分析评论网站,首席分析师为Dylan Patel,毕业于佐治亚大学特里商学院。

参考链接: [1]https://semianalysis.com/the-tesla-dojo-chip-is-impressive-but-there-are-some-major-technical-issues/ [2]https://news.ycombinator.com/item?id=28361807 [3]https://www.linkedin.com/in/dylanpatelsa/

本文系网易新闻•网易号特色内容激励计划签约账号【量子位】原创内容,未经账号授权,禁止随意转载。

「智能汽车」交流群招募中!

欢迎关注智能汽车、自动驾驶的小伙伴们加入社群,与行业大咖交流、切磋,不错过智能汽车行业发展&技术进展。加好友请务必备注您的姓名-公司-职位 哦~

点这里👇关注我,记得标星哦~

一键三连「分享」、「点赞」和「在看」

科技前沿进展日日相见~

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-09-03,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 量子位 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档