前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >R语言使用bootstrap和增量法计算广义线性模型(GLM)预测置信区间|附代码数据

R语言使用bootstrap和增量法计算广义线性模型(GLM)预测置信区间|附代码数据

原创
作者头像
拓端
发布2023-03-16 18:07:26
发布2023-03-16 18:07:26
51200
代码可运行
举报
文章被收录于专栏:拓端tecdat拓端tecdat
运行总次数:0
代码可运行

原文链接:http://tecdat.cn/?p=15062

最近我们被客户要求撰写关于广义线性模型(GLM)预测置信区间的研究报告,包括一些图形和统计输出。

考虑简单的泊松回归

我们要导出预测的置信区间,而不是观测值,即下图的点

代码语言:javascript
代码运行次数:0
运行
复制
> r=glm(dist~speed,data=cars,family=poisson)
> P=predict(r,type="response",
+ newdata=data.frame(speed=seq(-1,35,by=.2)))
> plot(cars,xlim=c(0,31),ylim=c(0,170))
> abline(v=30,lty=2)
> lines(seq(-1,35,by=.2),P,lwd=2,col="red")
> P0=predict(r,type="response",se.fit=TRUE,
+ newdata=data.frame(speed=30))
> points(30,P1$fit,pch=4,lwd=3)

最大似然估计

,Fisher信息来自标准最大似然理论。

这些值的计算基于以下计算

在对数泊松回归的情况下,

让我们回到最初的问题。

  • 线性组合的置信区间

获得置信区间的第一个想法是获得置信区间

(通过取边界的指数值)。渐近地,我们知道

因此,方差矩阵的近似将基于通过插入参数的估计量而获得。 然后,由于作为渐近多元分布,参数的任何线性组合也将是正态的,即具有正态分布。所有这些数量都可以轻松计算。首先,我们可以得到估计量的方差

因此,如果我们与回归的输出进行比较,

代码语言:javascript
代码运行次数:0
运行
复制
> summary(reg)$cov.unscaled
(Intercept)         speed
(Intercept)  0.0066870446 -3.474479e-04
speed       -0.0003474479  1.940302e-05
> V
[,1]          [,2]
[1,]  0.0066871228 -3.474515e-04
[2,] -0.0003474515  1.940318e-05

根据这些值,很容易得出线性组合的标准偏差,

一旦我们有了标准偏差和正态性,就得出了置信区间,然后,取边界的指数,就得到了置信区间

代码语言:javascript
代码运行次数:0
运行
复制
> segments(30,exp(P2$fit-1.96*P2$se.fit),
+ 30,exp(P2$fit+1.96*P2$se.fit),col="blue",lwd=3)

基于该技术,置信区间不再以预测为中心。


01

02

03

04

  • 增量法

实际上,使用表达式作为置信区间不会喜欢非中心区间。因此,一种替代方法是使用增量方法。我们可以使用一个程序包来计算该方法,而不是在理论上再次写一些东西,

代码语言:javascript
代码运行次数:0
运行
复制
> P1
$fit
1
155.4048

$se.fit
1
8.931232

$residual.scale
[1] 1

增量法使我们具有(渐近)正态性,因此一旦有了标准偏差,便可以得到置信区间。

通过两种不同的方法获得的数量在这里非常接近

代码语言:javascript
代码运行次数:0
运行
复制
> exp(P2$fit-1.96*P2$se.fit)
1
138.8495
> P1$fit-1.96*P1$se.fit
1
137.8996
> exp(P2$fit+1.96*P2$se.fit)
1
173.9341
> P1$fit+1.96*P1$se.fit
1
172.9101
  • bootstrap技术

第三种方法是使用bootstrap技术基于渐近正态性(仅50个观测值)得出这些结果。我们的想法是从数据集中取样,并对这些新样本进行log-Poisson回归,并重复很多次数,

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 原文链接:http://tecdat.cn/?p=15062
    • 考虑简单的泊松回归
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档