前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >(数据科学学习手札150)基于dask对geopandas进行并行加速

(数据科学学习手札150)基于dask对geopandas进行并行加速

作者头像
Feffery
发布2023-03-19 10:54:37
1.1K0
发布2023-03-19 10:54:37
举报
文章被收录于专栏:数据科学学习手札

本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介

  大家好我是费老师,geopandas作为我们非常熟悉的Python GIS利器,兼顾着高性能和易用性,特别是在其0.12.0版本开始使用全新的shapely2.0矢量计算后端后,性能表现更是一路狂飙。

  而我们作为使用者,当然是希望geopandas处理分析矢量数据越快越好。在今天的文章中,我将为大家简要介绍如何基于daskgeopandas进一步提速,从而更从容的应对更大规模的GIS分析计算任务。

2 dask-geopandas的使用

  很多朋友应该听说过dask,它是Python生态里非常知名的高性能计算框架,可以针对大型数组、数据框及机器学习模型进行并行计算调度优化,而dask-geopandas就是由geopandas团队研发的,基于daskGeoDataFrame进行并行计算优化的框架,本质上是对daskgeopandas的封装整合。

dask-geopandas的安装非常简单,在已经安装了geopandas的虚拟环境中,执行下列命令即可:

代码语言:javascript
复制
conda install dask-geopandas -c conda-forge -y

2.1 基础使用

dask-geopandasgeopandas的常用计算API是相通的,但调用方式略有不同,举一个实际例子,其中示例文件demo_points.gdb由以下代码随机生成并写出:

代码语言:javascript
复制
import numpy as np
import geopandas as gpd
from shapely import Point, Polygon

# 生成示例用矢量数据
demo_points = gpd.GeoDataFrame(
    {
        'id': range(1000000),
        'geometry': [
            Point(np.random.uniform(0, 90),
                  np.random.uniform(0, 90))
            for i in range(1000000)
        ]
    }
)

# 写出到本地gdb
demo_points.to_file('./demo_points.gdb', driver='OpenFileGDB')

  在使用dask-geopandas时,我们首先还是需要用geopandas进行目标数据的读入,再使用from_geopandas()将其转换为dask-geopandas中可以直接操作的数据框对象,其中参数npartitions用于将原始数据集划分为n个数据块,理论上分区越多并行运算速度越快,但受限于机器的CPU瓶颈,通常建议设置npartitions为机器可调度的CPU核心数:

代码语言:javascript
复制
demo_points = gpd.read_file('./demo_points.gdb', driver='OpenFileGDB')
demo_points_ddf = dgpd.from_geopandas(demo_points, npartitions=4)
demo_points_ddf

  在此基础上,后续执行各种运算都需要在代码末尾衔接.compute(),从而真正执行前面编排好的运算逻辑,以非矢量和矢量运算分别为例:

2.2 性能比较

  既然使用了dask-geopandas就是奔着其针对大型数据集的计算优化而去的,我们来比较一下其与原生geopandas在常见GIS计算任务下的性能表现,可以看到,在与geopandas的计算比较中,dask-geopandas取得了约3倍的计算性能提升,且这种提升幅度会随着数据集规模的增加而愈发明显,因为dask可以很好的处理内存紧张时的计算优化:

  当然,这并不代表我们可以在任何场景下用dask-geopandas代替geopandas,在常规的中小型数据集上dask-geopandas反而要慢一些,因为徒增了额外的分块调度消耗。

  除了上述的内容外,dask-geopandas还有一些实验性质的功能,如基于地理空间分布的spatial_partitions数据分块策略优化等,待它们稳定之后我会另外发文为大家介绍😉。


  以上就是本文的全部内容,欢迎在评论区与我进行讨论~

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2023-03-18,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 2 dask-geopandas的使用
    • 2.1 基础使用
      • 2.2 性能比较
      相关产品与服务
      GPU 云服务器
      GPU 云服务器(Cloud GPU Service,GPU)是提供 GPU 算力的弹性计算服务,具有超强的并行计算能力,作为 IaaS 层的尖兵利器,服务于生成式AI,自动驾驶,深度学习训练、科学计算、图形图像处理、视频编解码等场景。腾讯云随时提供触手可得的算力,有效缓解您的计算压力,提升业务效率与竞争力。
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档